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Introduction
• Conformal prediction (CP) uses the degree of

strangeness (nonconformity) of new data examples
to determine the confidence values of new
predictions.

• Conformal predictors can be implemented in
conjunction with any traditional pattern classification
algorithm, yielding a set of predicted class labels with
guaranteed error rate

Motivation
CP can be used in a variety of applications, including:
• Robust face recognition
• Breast cancer diagnosis
• Active learning

Background: Conformal prediction
Let {𝑧#, … , 𝑧&} be a bag of elements 𝑧( = 𝐱(, ℎ( . Where
𝐱( represents a feature vector and ℎ( its class label.

• Nonconformity measure: Function that produces a
nonconformity score 𝛼, which measures how much
an instance 𝐱&-. conforms to a particular class ℎ.

• Example: Neural networks / SVMs
𝛼&-.
(ℋ1) = −𝑜&-.

(5) + max
(:#,…,;,(<5

𝑜&-.
( ,

• where 𝑜&-.
(() is the 𝑖-th output of the neural network

due to the input 𝐱(

• p-values: Represent the probability that 𝐱&-.
belongs to a particular class 𝑞

𝑝@ABC
ℋ1 =

𝑐𝑜𝑢𝑛𝑡{𝑖: 𝛼( > 𝛼&-.
(ℋ1)}

𝑛 + 1 , Kℎ&-. = argmax
5
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The confidence of 𝐱&-. is defined as
𝑐 𝐱&-. = 𝑝&-.

# − 𝑝&-.
N ,

where 𝑝&-.
# and 𝑝&-.

N are are the largest and second 
largest p-values for instance 𝐱&-., respectively

Validity property: 𝚿&-.
P = {𝑖: 𝑝@ABC

ℋQ > 𝜖} contains the 
correct label for 𝐱&-. with probability (1 − 𝜖), where 
𝜖 ∈ [0,1] is called significance level.

Conformal Prediction Based Active Learning by Linear 
Regression Optimization (CPAL-LR)

Nonconformity measure:

𝛼&-.
ℋ1 = −𝛾𝑜&-.

(5) + (1 − 𝛾) max
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(

Proposed Query function: Considers uncertainty, representativeness , and
diversity.

X𝐫 = arg min
𝐫

𝐐𝐫 − 𝐮 N
N + 𝜆 𝐃𝐫 N

N

s.t. 0 ≤ 𝐫 ≤ 𝟏

Background: Active Learning and Query Functions
Set of techniques that automatically select the most relevant/useful data 
instances to train classifiers
• Labeling instances is an expensive task for large databases (we want to 

select relevant instances)
Query Functions: Functions used to select examples from the unlabeled pool

• Uncertainty + Kernel Based Diversity (MCLU-KBD):

𝐱b = argmin
𝐱Q∈cQ/ce

𝜌𝑐 𝐱( + (1 − 𝜌)max
𝐱C∈ce

exp −
𝐱( − 𝐱𝒋 N

N

2𝜎

Experimental Results
CPAL-LR is evaluated on three databases: The Extended YaleB, AR,
and the Caltech101. Example images can be seen in Fig 1.

Figure 1. Example Images a) YaleB b) AR c) Caltech101

Conclusion
• CPAL-LR improves the performance of SVMs through active

learning, outperforming previously proposed techniques, while
producing reliable confidence values

Quality of the Confidence Values
ValE: The percentage of errors measured as the number of 
times the correct label for instance 𝐱&-. is not in the set 𝚿&-.

P

SinP: The percentage of 𝚿&-.
P such that 𝚿&-.

P = 1

Classification accuracy

Figure 2. Classification accuracy (%) a) YaleB b) AR

Figure 3. Nonconformity measure performance  (%) a) ValE b) SinP
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𝐮 accounts for uncertainty
𝐐 accounts for diversity
𝐫 denotes relevance
𝐃 accounts for representativeness
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𝐃 incorporates representativeness
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𝑑( is high in sparsely populated 
regions
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Active Learning Algorithm
1. Find classification rule 𝐷 using 
the classifier and prop. train. set
2. Compute the nonconformity 
scores of the unlabeled pool and 
calibration 
3. Compute the p-values 

𝑝 𝛼&-.
(ℋ1) =

𝑐𝑜𝑢𝑛𝑡 𝑖: 𝛼( > 𝛼&-.
(ℋ1)

𝑛 + 1
4. Compute confidence 𝑐 𝒙&-.
5. Select instances using the 
proposed query function
6. Return 𝑇}~ = 𝑇���� ∪ 𝑇�, where 
𝑇� contains the 𝑁}~ instances 
selected using the proposed query 
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