

Language Technologies Institute

At a Glance **Problems** in low resource languages -• Collection and cleaning of data can be expensive. • Often we find data which is either out-of-domain or have very little in-domain data. This results in **bad word language models**. **Solution:** Train LMs on smaller units; characters, phonemes, etc. In this work, we show that with **phoneme language models** -• We can do parameter sharing (**Multilinguality**). Better adaptation to a new language (Crosslingual Adaptation) Decode with a targeted lexicon to get unseen words (**Domain Robustness**) Phoneme Level Language Models (PLMs)

The idea of PLMs is simple -

- Instead of training on characters, convert the words of any language into their corresponding IPA symbol. [1]
- Use the phonemic transcriptions sequence of "characters" to train a standard charLM. [2]

Multilinguality using PLMs

- Making **one model for all languages** could not be imagined with word LMs as the sharing of words across language is quite low.
- PLMs present a unique opportunity to share parameters and transfer knowledge from other languages.

We train the model on the phonemic transcription of each language by keeping a shared phoneme space but individual word boundary, **<space>**. We apply masked training approach to train the model -

 $ind = where(lang_mask = True)$ $logits = W_{out}LSTM(Emb(x_1, ..., x_{t-1})) + b_{out}$ $sparse_softmax = softmax(gather_{ind}(logits))$

We can see that with Multilingual PLMs, we use 6 times fewer **parameters** with almost the same performance.

	I	
PLM Small	PLM Large	Multi-PLM Large
$\sim 0.4 \mathrm{M} \times 6$	$\sim 4.5 \mathrm{M} \times 6$	${\sim}4.6\mathrm{M}$
3.91	3.80	3.80
3.62	3.43	3.46
3.53	3.36	3.38
3.02	2.89	2.89
3.63	3.44	3.50
4.18	3.95	4.00
-	~0.4M×6 3.91 3.62 3.53 3.02 3.63	$\sim 0.4 \text{M} \times 6$ $\sim 4.5 \text{M} \times 6$ 3.91 3.80 3.62 3.43 3.53 3.36 3.02 2.89 3.63 3.44

Table: PLM (Small and Large) and Multi-PLM (Large) perplexities for different languages in the training set.

Phoneme Level Language Model for Sequence Based Low Resource ASR

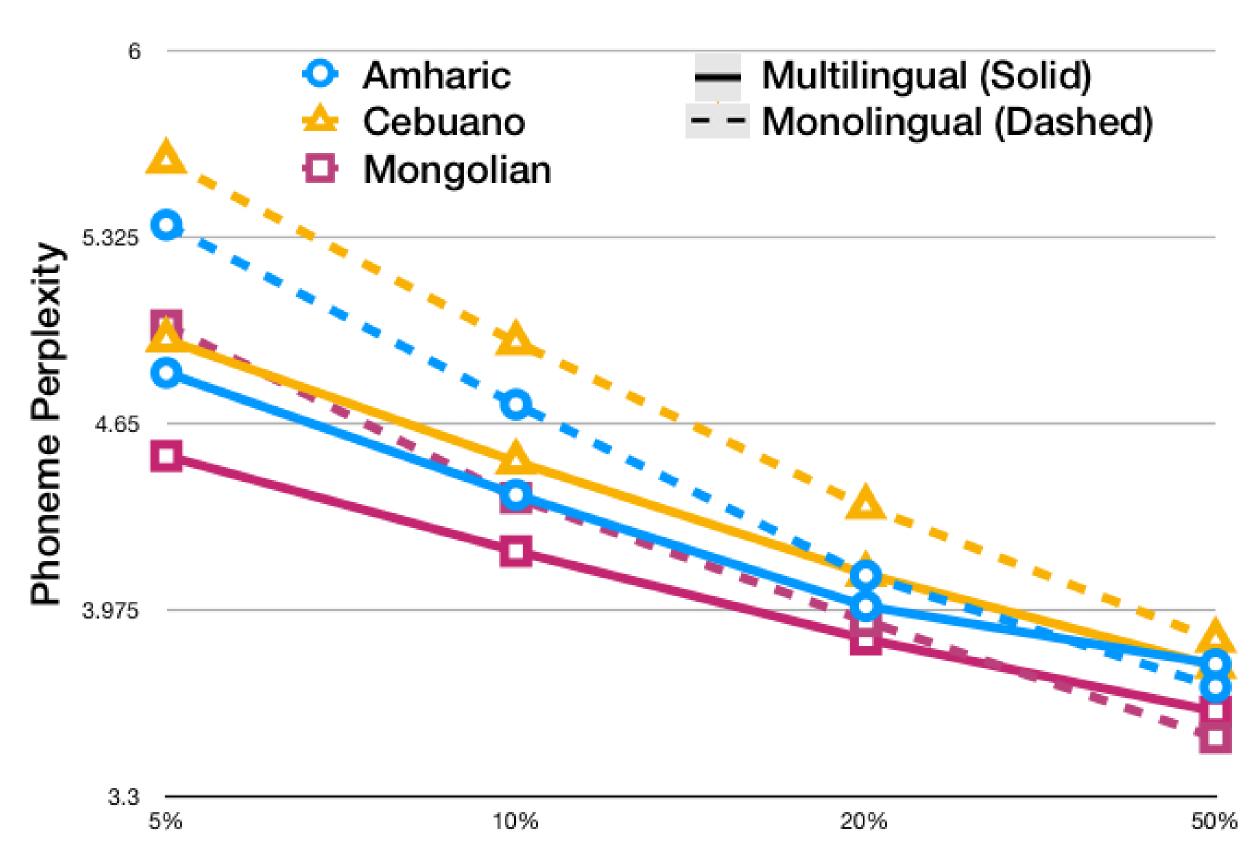
Siddharth Dalmia, Xinjian Li, Alan W Black, Florian Metze

sdalmia@cs.cmu.edu

Language Technologies Institute, Carnegie Mellon University

Crosslingual Adaptation of PLMs

- Multilingual PLMs show better adaptations to a new **language** than training a new language model.
- Bigger improvements on smaller amounts of data.



Amount of Training Data

Figure: PPL after adaptation of Multi-PLM to target languages on different amounts of data. Multi-PLM outperforms PLM for small amounts of training data.

Targeted Decoding with PLMs

CTC based acoustic models typically use WFST based decoding [3] or open vocabulary charLM decoding [2]. **Open vocabulary decoding is not reliable in low resource languages** as it leads to incorrect OOV words. For example, in Zulu, open vocabulary decoding gives 9% incorrect OOV words. We propose a modification to better use our PLMs -

- **Targeted decoding** We decode paths that only produce a valid word.
- This allows us to **control the words produced by the ASR** model.
- Better than CLM (6% avg). Almost as good as WFST.

Babel	WFST	CLM	PLM
Languages	Based Decoding		
Cebuano	57.1	71.1	67.9
Mongolian	60.5	84.3	59.0
Amharic	57.2	64.8	57.6
Javanese	65.7	68.4	64.8
Tagalog	55.7	58.0	55.8
Kazakh	57.8	64.2	61.3
Turkish	56.9	58.5	59.4
Swahili	61.2	50.7	50.8
Zulu	65.2	75.3	63.7

Table: % WER on each languages using different kinds of decoding strategies.

Decoding under Low Resource Conditions

source challenges-

- mates.
- data from Babel dataset.

We can see that **PLM based decoding outperforms WFST based decoding**, showing its capability of generating words outside language model training data by just using a targeted lexicon.

Babel	WFST	PLM
Languages	Based De	ecoding
Cebuano	86.2	79.8
Javanese	93.1	80.8
Tagalog	83.4	68.9
Kazakh	78.3	72.5

Table: % WER using different decoding strategies on LMs trained on the Bible text.

show

 \checkmark With Multilingual PLMs we use 6 times fewer parameters. ✓ Multilingual PLMs **adapt better to a new language** in very low

- resource settings.
- open-vocabulary decoding

This project was sponsored by the Defense Advanced Research Projects Agency (DARPA) Information Innovation Office (I2O), program: Low Resource Languages for Emergent Incidents (LORELEI), issued by DARPA/I2O under Contract No. HR0011-15-C-0114.

- models," in *Interspeech*. ISCA, 2017.

Carnegie Nellon University

We study the robustness of our model for typical low re-

• Little training data: We see PLM based decoding is better than WFST based decoding. This is due to bad word probabilities esti-

Domain Mismatch: To test domain mismatched conditions we train our model on Bible text and test on the in-domain conversational

Conclusion

In this work we propose a **phoneme level language model** and

 \checkmark Using PLMs with targeted decoding, affords significant **gains over**

 \checkmark Outperforms WFST in low resource conditions.

Acknowledgement

References

[1] D. R. Mortensen, et al., "Epitran: Precision G2P for many languages," in Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), May 2018.

[2] T. Zenkel, et al., "Comparison of decoding strategies for CTC acoustic

[3] Y. Miao, et al., "EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding," in 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 167–174.