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Introduction
Imaging inverse problems and large-scale optimization

Many inverse problems involve solving convex composite optimization
tasks:

x? ∈ arg min
x∈X

{
F (x) :=

1

n

n∑
i=1

f̄ (ai , bi , x) + λg(x)

}
, (1)

Data fidelity term f (x) := 1
n

∑n
i=1 f̄ (ai , bi , x), regularization g(x).

In imaging inverse problems:

x ∈ Rd → vectorized image,
A = [a1; a2; ...; an] ∈ Rn×d → the forward model/measurements ,
b = [b1; b2; ...; bn] ∈ Rn → the observations.
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Introduction
Imaging inverse problems and large-scale optimization

Example: Total-Variation regularized least-squares

F (x) := ‖Ax − b‖22 + λ‖Dx‖1. (2)

(D → discrete gradient operator.)
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Introduction
Imaging inverse problems and large-scale optimization

First-order optimization:

Deterministic gradients → FISTA, PDHG, GFB, TOS, etc.

Stochastic gradients → SGD, SVRG, SAG, Katyusha,..., etc
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Introduction
Imaging inverse problems and large-scale optimization

First-order optimization:

Deterministic gradients → large per-iteration cost scales with n

Stochastic gradients
→ small per-iteration cost
→ Optimal convergence rate via variance-reduction + momentum
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Success of Stochastic Optimization in Machine Learning

Stochastic gradient methods are almost always preferred than
detereministic methods in machine learning practice.
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A Deblurring Experiment
where stochastic gradient methods fail to be efficient

We consider a non-uniform deblurring task:
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A Deblurring Experiment
where stochastic gradient methods fail to be efficient

Deblur with TV regularization

F (x) := ‖Ax − b‖22 + λ‖Dx‖1. (3)

FISTA beats the best stochastic algorithms (with 10% random
subsampling in each iteration).
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Figure: the estimation error of the central part (100 by 100) of the image.
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A Deblurring Experiment
where stochastic gradient methods fail to be efficient

(at least) two pitfalls of stochastic gradient methods in imaging inverse
problems:

Fundamental limitation : for some tasks we indeed cannot expect
significant benefit from stochastic gradient methods

Inefficiency regarding the proximal operators : Compared to FISTA,
the stochastic gradient methods typically need to compute the
proximal operator much more often.
And..
– the proximal operator may be non-trivial to compute.
– we may have multiple non-smooth regularization terms.
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A Deblurring Experiment
where stochastic gradient methods fail to be efficient

To move forward

Fundamental limitation
we need to:
→ identify whether a inverse problem is suitable for stochastic
gradient methods.
→ find the best sampling scheme to maximize the potential of
stochastic methods.

Inefficiency regarding the proximal operators
we need to:
→ choose/design appropriately the algorithmic framework.
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Stochastic Acceleration Factor

For a given a minibatch index [S0, S1,S2, ...,SK ] such that
S1 ∪ S2 ∪ ... ∪ SK = [n] and:

fSk (x) =
K

2n

∑
i∈Sk

fi (x), OfSk (x) :=
K

n

∑
i∈Sk

Ofi (x), (4)

while k ∈ [K ].

Assumption

(Smoothness of the Full-Batch and the Mini-Batches.)
f is Lf -smooth and each fSk is Lb-smooth, that is:

f (x)− f (y)− Of (y)T (x − y) ≤ Lf
2
‖x − y‖22, ∀x , y ∈ X , (5)

and

fSk (x)− fSk (y)− OfSk (y)T (x − y) ≤ Lb
2
‖x − y‖22, ∀x , y ∈ X , (6)

Junqi Tang (University of Edinburgh) Stochastic Optimization in Inverse Problems ICASSP 2019 11 / 28



Stochastic Acceleration Factor

Definition

(SA Factor Function.) For a given minibatch index S̄ = [S1, ...SK ], the
Stochastic Acceleration (SA) factor function is defined as:

Υ(A, S̄ ,K ) =
KLf
Lb

(7)
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Stochastic Acceleration Factor
Motivation

Definition

(The class of optimal deterministic gradient algorithms.)
A deterministic gradient method Afull is called optimal if for any s ≥ 1,
the update of s-th iteration x sAfull

satisfies:

F (x sAfull
)− F ? ≤ C1Lf ‖x0 − x?‖22

s2
, (8)

for some positive constant C1.
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Stochastic Acceleration Factor
Motivation

Definition

(The class of optimal stochastic gradient algorithms.)
A stochastic gradient method Astoc is called optimal if for any s ≥ 1 and
K ≥ 1, after a number of s · K stochastic gradient evaluations, the output
of the algorithm x sAstoc

satisfies:

EF (x sAstoc
)− F ? ≤ C2[F (x0)− F ?]

s2
+

C3Lb‖x0 − x?‖22
Ks2

, (9)

for some positive constants C2 and C3.
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Stochastic Acceleration Factor
A motivating theorem

Theorem (informal)

(A motivating theorem for SA factor function.) Denote an optimal
deterministic gradient algorithm Afull, and an optimal stochastic gradient
algorithm Astoc. For some sufficiently large dimension d , there exists a
worst case choice of objective F , such that:

EF (x sAstoc
)− F ?

F (x sAfull
)− F ?

≥ c0 ·
Lb
KLf

(10)

for some positive constant c0 which do not depend on Lb, Lf and K .

(A upper bound can also be shown which is also scale with the ratio Lb
KLf

)
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Stochastic Acceleration Factor
Definition

Definition

(SA Factor Function.) For a given minibatch index S̄ = [S1, ...SK ], the
Stochastic Acceleration (SA) factor function is defined as:

Υ(A, S̄ ,K ) =
KLf
Lb

(11)
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Stochastic Acceleration Factor
Examples for regularized Least-squares regression

Consider the least squares loss function with different types of forward
operator:

f (x) = ‖Ax − b‖22 =
1

K

K∑
k=1

fSk (x), (12)

fSk (x) := K‖ASkx − bSk‖
2
2, (13)

Interleaving sampling:

fSk (x) :=
K

n

bn/Kc∑
i=1

fk+iK (x) = K

bn/Kc∑
i=1

(aTk+iKx − bk+iK ) (14)
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Stochastic Acceleration Factor
Examples for regularized Least-squares regression

space-varying deblurring (Ablur ∈ R262144×262144, g(x) = ‖x‖TV )

compressed sensing random matrix ( Arand ∈ R500×2000, g(x) = ‖x‖1)

X-ray CT (ACT ∈ R91240×65536, g(x) = ‖x‖TV )

RCV1 dataset (Arcv1 ∈ R20242×47236, g(x) = ‖x‖1)

magic04 dataset (Amagic04 ∈ R19000×50, g(x) = ‖x‖1)
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Stochastic Acceleration Factor
Examples for regularized Least-squares regression
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Figure: Left: Stochastic Acceleration (SA) factor of inverse problems with
different forward operators.
Right: Empirical observation comparing the objective gap convergence of
Katyusha and FISTA algorithm in 15 epochs.
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Stochastic Primal-Dual Three-Operator Splitting
Tackling the inefficiency on proximal operators in stochastic optimization

Consider now a generic composite minimization task with two
regularization terms (with a linear operator):

x? ∈ arg min
x∈Rd

{F (x) := f (x) + λg(Dx) + µh(x)} , (15)

The saddle-point formulation can be written as:

[x?, y?] = min
x∈Rd

max
y∈Rr

f (x) + h(x) + yTDx − λg∗(y) (16)
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Tackling the inefficiency on proximal operators in
stochastic optimization

To move forward

Fundamental limitation

Inefficiency regarding the proximal operators
we need to:
→ choose/design appropriately the algorithmic framework.
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Accelerated Primal-Dual SGD
Tackling the inefficiency on proximal operators in stochastic optimization

Initialization: x0 = v0 = v−1 ∈ dom(g), the step size sequences
α(.), η(.), θ(.), l = 0, and a balanced sampling partition S̄ .

Outer loop (Momentum) (t = 1, 2, 3, ... N):

x t ← (3t−2)v t−1+tx t−1−(2t−4)v t−2

2t+2 , x0 ← x t , z0 ← x t , y0 ← Dx0

Inner loop (k = 1, 2, 3, ... K):

l ← l + 1, Pick i ∈ [1, 2, ...K ] uniformly at random
Dual Ascent → yk+1 = proxαl

λg∗(yk + αlDzk)

Primal Descent → xk+1 = proxηlγh
(
xk − ηl(DT yk+1 + OfSi (xk))

)
Inner-loop Momentum → zk+1 = xk+1 + θl(xk+1 − xk)

v t ← xK

Return x t
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Space-Varying Deblurring Experiment
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Figure: The estimation error plot for the deblurring experiment with
TV-regularization. Image: Kodim05, with an additive Guassian noise (variance 1).
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X-Ray CT reconstruction
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Figure: The estimation error plot for the X-ray CT image reconstruction

experiment with TV-regularization. Measurement SNR : log10
‖Ax†‖2

2

‖w‖2
2
≈ 3.16
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X-Ray CT reconstruction
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Figure: The estimation error plot for a noisy X-ray CT image reconstruction
experiment with TV-regularization and `1 regularization on Haar-wavelet basis.

Measurement SNR : log10
‖Ax†‖2

2

‖w‖2
2
≈ 2.86
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X-Ray CT reconstruction

50 100 150 200 250

Filtered Backprojection

50

100

150

200

250

50 100 150 200 250

Reconstructed by FISTA

50

100

150

200

250

50 100 150 200 250

Reconstructed by SPDTCM

50

100

150

200

250

50 100 150 200 250

Reconstructed by Acc-PD-SGD

50

100

150

200

250

Figure: The reconstructed images by the compared algorithms with
TV-regularization.
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X-Ray CT reconstruction
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Figure: The reconstructed images by the compared algorithms at termination
using joint TV-`1 regularization.
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Summary

Take-home messages:

For some inverse problems we cannot expect too much benefit from
randomized algorithms.

We can effectively characterize this fundamental limitation via the
SA factor function

We propose an accelerated stochastic primal-dual framework for
efficiently handle the proximal operators.

On-going works:

Understand the connection between inherent structure of forward
model A and SA factor function.

Design the optimal sampling scheme for SGD via the SA factor
function.

Extensions to plug-and-play algorithms.
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