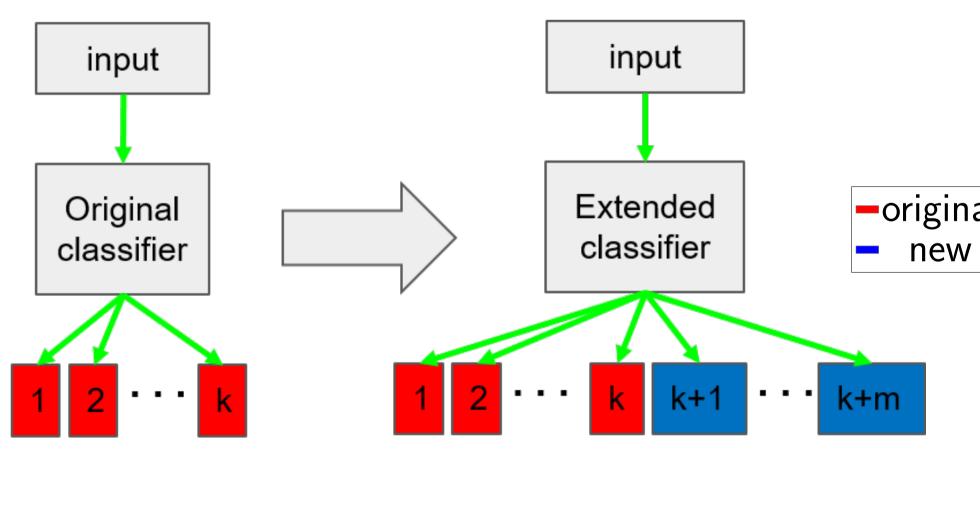


Overview

- We propose a deep learning method for adding new classes to a given classifier without access to the original data.
- This problem arises frequently since models are often shared without their training data, due to privacy and data ownership concerns.
- We modify the original classifier by retraining a suitable subset of layers using a knowledge-distillation regularization
- The achieved accuracy is almost as good as that obtained by a system trained from both the original and new classes.

Problem formulation

- We are given a classifier C_A for k original classes $A = \{1, 2, ..., k\}$ and training data for m **new** classes $B = \{k+1, ..., k+m\}$.
- We wish to build an extended classifier C_{AB} , that can handle samples from all classes $A \cup B$.
- We can access to the parameters of C_A but not its training data.



 $p_{or}(y=i|\mathbf{x}), \quad i \in \mathbf{A}$

 $p_{ex}(y=i|\mathbf{x}), \quad i \in A \cup B$

Challenges

- Catastrophic Forgetting
- Forget previously learned information upon learning new one Privacy
 - No samples from original classes at training time
- In contrast to *Transfer Learning*, we interested in the extended class-set, rather than the new one

Network Adaptation Strategies for Learning New Classes Without Forgetting the Original Ones

Hagai Taitelbaum¹, Gal Chechik², Jacob Goldberger¹ ¹ Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel ² The Gonda Brain Research Center, Bar-Ilan University and NVIDIA Research

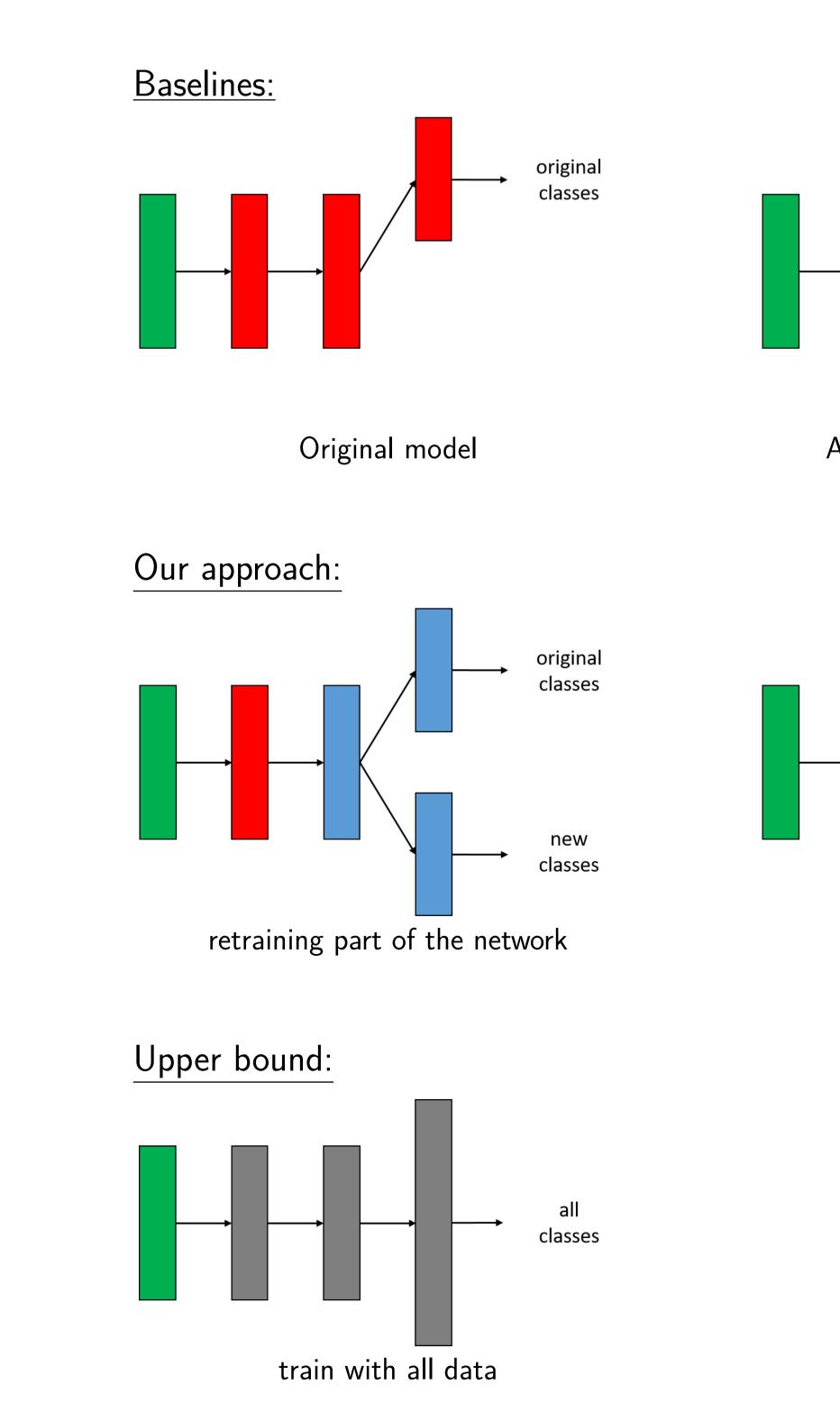
Our training approach

- Retrain a subset of the layers of C_A Motivated by Transfer Learning
- Use a regularized term: Motivated by Knowledge Distillation

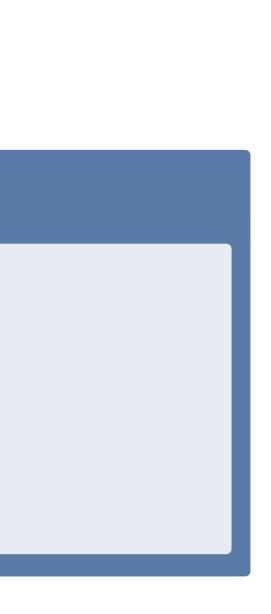
$$L = (1 - \epsilon) \sum_{t=1}^{n} \log p_{ex}(y_t | \mathbf{x}_t) + \epsilon \sum_{t=1}^{n} \sum_{i \in A} p_{or}(\mathbf{x}_t)$$

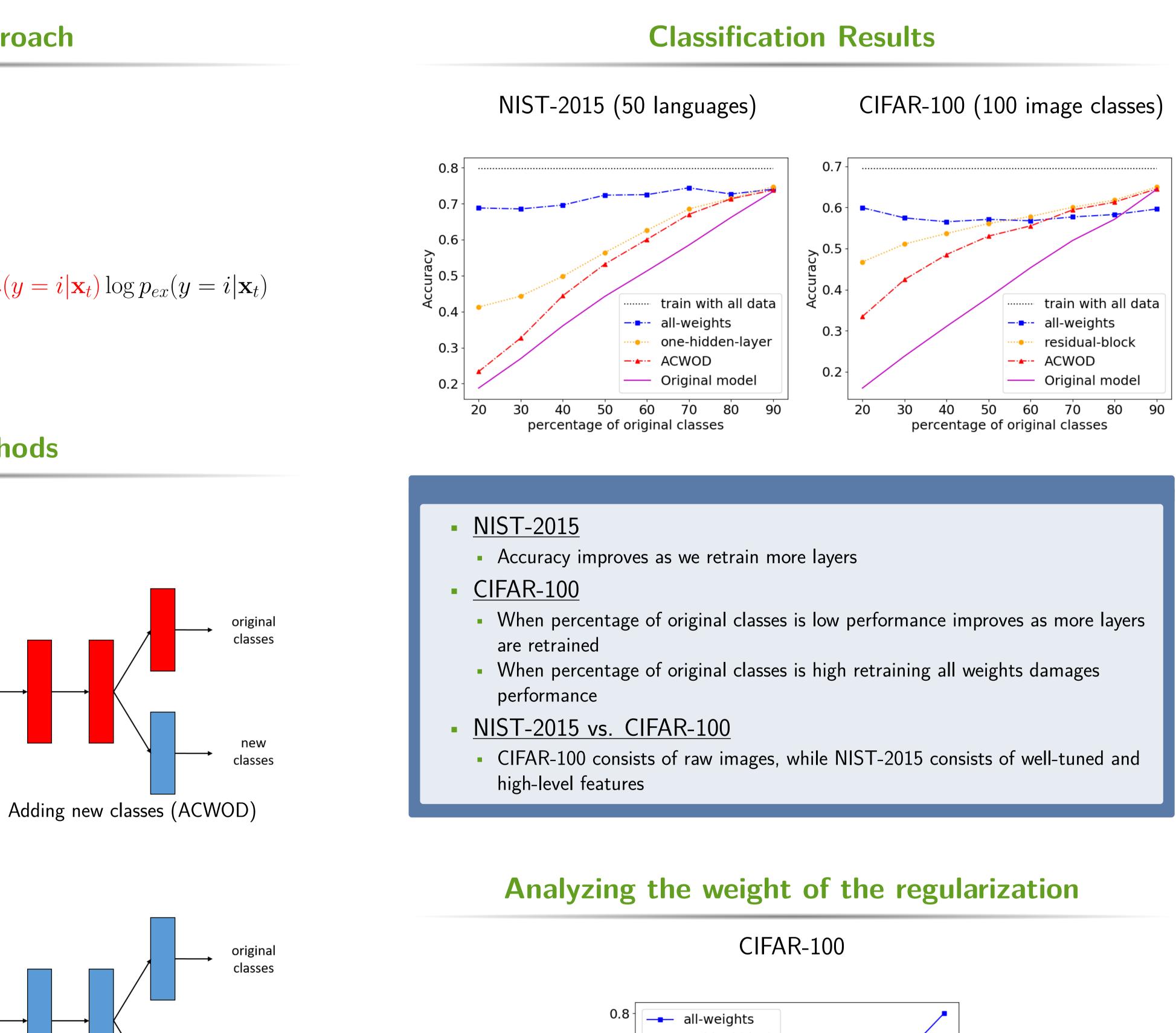
where ϵ weights the regularization term

Compared Methods



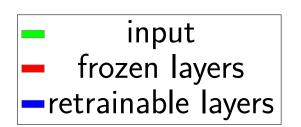
original classes A new classes B





retraining all layers

classes



• ϵ is linearly proportional to the number of original classes.

07

0.6

0.5

^ພ 0.4 າ

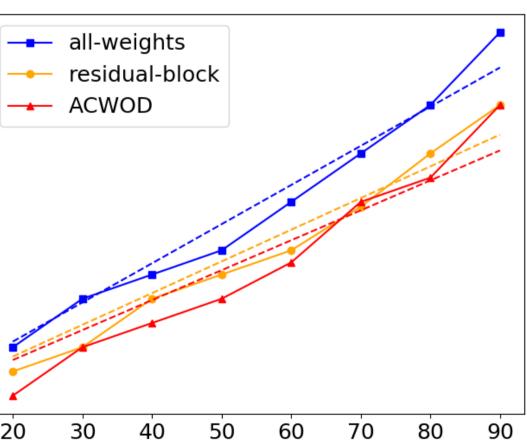
0.3

0.2

0.1

ACWOD

- As more layers are retrained, ϵ is bigger.



percentage of original classes

```
  Methods which constraint network layers (ACWOD, residual-block),

allow the re-trainable layers to better adapt, using a smaller \epsilon.
```