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TL;DR - Duration model is very useful for improving boundary detection, 
for expressive models >2-gram (incl. LSTM)



Introduction 
Problem setting

Input - Music audio signal 

Output - Locations of structural boundaries (e.g., Verse, Chorus)
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[Paulus+2010]Approaches 

MSLS (Mel-scale log spectrogram)
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[Goto2003]Approaches [Paulus+2010]

SSM (Self-similarity matrix)
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[Paulus+2010]Approaches [Cooper+2003]
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[Cheng+2018]Approaches [Paulus+2010]

[Paulus+2009] 
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[Ullrich+ 2014] 
[Grill+ 2015]Approaches 
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Likely, from unigram’s viewpoint

Unigram

[Levy+ 2006]
[Smith+2016]

Not likely

No duration at all

Approaches 



Repetition NoveltyHomogeneity Duration

Likely, from unigram’s viewpoint (But probably wrong)

Unigram

[Levy+ 2006]
[Smith+2016]

Not likely

No duration at all

Approaches 



Repetition NoveltyHomogeneity Duration

Likely, from unigram’s viewpoint (But probably wrong)

Unigram

Likely

Rich class of duration (LSTM, N-gram)

[Levy+ 2006]
[Smith+2016]

Not likely

No duration at all

Approaches 

Main Contribution: Enabling incorporation of elaborate duration models



[Ullrich+ 2014] 
[Grill+ 2015]Our Approach 

(Repetition) NoveltyHomogeneity

Likely

Rich class of duration (LSTM, N-gram)

Duration



DNN boundary + LSTM duration + homogeneity

DNN boundary

An example 
 



Our method  
Overview

MSLS
sliced at  
8th-note level

SSM (MSLS)
sliced at  
8th-note level lead/lag of  

200 beats

128 dims 
0 to 11kHz

B
Boundary positions  
in beats



Our method  
Overview

B = arg max
B̂

fB(B̂) + αfD(B̂) + βfH(B̂)

Boundary fitness

Segment duration fitness

Timbre homogeneity fitness

fB(B̂)
fD(B̂)
fH(B̂)

B
Boundary  
positions in beats

Find B using beam-search



fB(B̂) = log-probability of boundary at {b1, ⋯, bN}
- log-probability of non-boundary at {b1, ⋯, bN}

Linear 

1024 
neurons

p(boundary)

MSLS
sliced at  
8th-note level

SSM (MSLS)
sliced at  
8th-note level

Beat bn+/-16 beats

Conv. 
kernel=(3x6) 
channel=16

Maxpool  
kernel=(1x6)

Conv. 
kernel=(3x3) 
channel=32

LinearConv. 
kernel=(3x6) 
channel=16

Maxpool  
kernel=(1x6)

Conv. 
kernel=(3x3) 
channel=32

σ(x)

B̂
b1 b2 bN⋯

Our method  
Boundary fitness



p(Lm |L1…Lm−1) = LSTM(L1⋯Lm−1)

(Edge cases L1 and LN are treated differently)

LSTM

L1 L2 L3 LN

B̂
⋯

Our method  
Duration fitness

fD(B̂) = log (∏
i

p(Li |L1⋯Li−1))

p(Lm |L1…Lm−1)

n-gram

= p(Lm |Lm−n+1…Lm−1)
(n+1)-th order Markov assumption p(Lm)Lm−1

LSTM 
state=1024

Embed 
dim=64 Linear

prev. LSTM state

cur. LSTM state

softmax

p(L1) ∝ exp(−const. × L1) p(LN) = log ∑
l>LN

p(l)



B̂

MSLS smoothed 
by a Hanning window

fH(B̂) = − ∑
n

Tr(Cov(X(ℬn))

Our method  
Timbre homogeneity fitness

X(t)

ℬ1 ℬ2 ℬN

Variance inside segment n, 
summed over dimensions



• Training data
• 410 songs from JP + US hit-charts, with in-house labels
• In-house 7700 MIDI data with structural annotations

• Validation data
• First album of the Beatles w/ Isophonics label [Mauch+2009]

• Test data
• RWC Popular [Goto+2002]
• SALAMI [Smith+2011]

• Use only Internet Archives (more degraded compared to commercial audio)
• Beatles w/ Isophonics label (all BUT the first album) [Mauch+2009]

Evaluation 
Experimental Conditions



1. Train each component individually 

• Boundary fitness trained on real audio + synthesized MIDI 

• Duration fitness trained on MIDI 

2. Optimize α and β using Bayesian Optimization

Evaluation  
Training details



1. Does duration model help?
1.Train boundary fitness model, and various duration models

• 1-gram, 2-gram … 5-gram
• Katz backoff (k=1);  Unseen unigram duration assigned log-likelihood of -100

• LSTM
2.Evaluate the F-measure with 0.5s threshold using mir_eval [Raffel+14]

2. How does each fitness contribute as the duration model becomes more expressive?
• Compare best weights α, β

3. How does our method compare with other methods?

B = arg max
B̂

fB(B̂) + αfD(B̂) + βfH(B̂)

Evaluation 
Experiments



• duration model contributes 
significantly 

• ...but only for higher-order 
models that can take into 
account more than three past 
durations
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Evaluation 
Results

Duration model is useful for boundary detection,  
for expressive models >2-gram (incl. LSTM)



1. Does duration model help?
1.Train boundary fitness model, and various duration models

• 1-gram, 2-gram … 5-gram
• Katz backoff (k=1);  Unseen unigram duration assigned log-likelihood of -100

• LSTM
2.Evaluate the F-measure with 0.5s threshold using mir_eval [Raffel+14]

2. How does each fitness contribute as the duration model becomes more expressive?
• Compare best weights α, β
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Experiments



• Less expressive duration models 
does little good 

• Strong contribution for N>2-gram 

• Homogeneity inside a segment 
counteracts excessive reliance on 
duration
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α  (weight of the duration fitness)
β  (weight of the homogeneity fitness)

Evaluation 
Results

Duration and homogeneity contribute more  
as the duration model becomes more expressive
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• Conditions 
• MSAF (PCP/SF) [Nieto+16][Fujishima99][Serra+2014] 
• Spectral Clustering [McFee+14] 
• Peak pick [Grill+15], using boundary fitness model 
• Threshold optimized on validation data 
• Proposed method 

• Metrics 
• Precision, Recall, F0.58 measure [Nieto+14], F-measure 
• All 0.5s threshold

Evaluation 
Conditions



• DNN is good at finding candidates  

• Duration+homogeneity serves to 
increase P significantly  
while slightly decreasing R
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• CNN-based boundary detection, with elaborate segment duration models 
(various ngrams and LSTM), and a simple homogeneity model  

• Beam-search to combine multiple hypotheses sources

• Evaluation showed homogeneity and duration models helps,  
provided that duration model is expressive enough (>2gram)

• Future work - combine more expressive model of homogeneity 
and an explicit expressive model of repetition

Conclusion 


