

Aggregation Graph Neural Networks

Fernando Gama, Antonio G. Marques, Geert Leus & Alejandro Ribeiro

Dept. of Electrical and Systems Engineering University of Pennsylvania

IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) Brighton, UK — May 16, 2019

- ► Neural Networks ⇒ Information processing architectures (models) ⇒ Linear transform followed by activation function
- ► Design linear transform to *fit* a training set ⇒ Generalization ⇒ Minimize a cost function over the training set ⇒ Learn
- Linear transforms depend on the size of data \Rightarrow **Do not scale**
- ► Convolutional Neural Networks ⇒ Regularize linear operation ⇒ Linear transform is now a bank of filters ⇒ Convolution

linear transform

Penn

- ▶ Network data ⇒ Data elements related by pairwise relationships
 - \Rightarrow Irregular structure \Rightarrow Convolution does not work

Aggregation graph neural networks

- \Rightarrow Exploit underlying graph topology
- \Rightarrow Regularize linear transform \Rightarrow Local architecture
- \Rightarrow Tools from Graph Signal Processing (GSP) framework

Neural Networks (NNs)

- Training set $\mathcal{T} = \{(\mathbf{x}, \mathbf{y})\}$ with input-output pairs (\mathbf{x}, \mathbf{y})
- ► Learning = Estimate output $\hat{\mathbf{y}}$ associated with input $\mathbf{x} \notin \mathcal{T}$ ⇒ Adopt a neural network architecture to map between \mathbf{x} and $\hat{\mathbf{y}}$
- Layer ℓ ⇒ Linear transform followed by pointwise nonlinearity ⇒ Cascade L layers (input x₀ = x and output ŷ = x_L)

$$\mathbf{x}_1 = \sigma_1 (\mathbf{A}_1 \mathbf{x}), \ \dots, \ \mathbf{x}_{\ell} = \sigma_{\ell} (\mathbf{A}_{\ell} \mathbf{x}_{\ell-1}), \ \dots, \ \mathbf{x}_{L} = \sigma_{L} (\mathbf{A}_{\ell} \mathbf{x}_{L-1})$$

▶ Use T to find $\{\mathbf{A}_{\ell}\}$ that optimize loss function $\sum_{T} \mathcal{L}(\mathbf{y}, \mathbf{x}_{L})$

Convolutional Neural Networks (CNNs)

- Linear transform $\mathbf{A}_{\ell} \Rightarrow$ Contains parameters to learn
 - \Rightarrow Depends on the size of the input data (feature extraction)
 - \Rightarrow Curse of dimensionality, large datasets, computationally costly, ...
- $\blacktriangleright \text{ CNNs } \Rightarrow \textbf{Regularize linear transform } \Rightarrow \textbf{Small-support filters}$
 - \Rightarrow Number of learnable parameters independent of size of data
 - \Rightarrow Filtering \Rightarrow Output computed by convolution (efficiently)
 - \Rightarrow Exploit underlying regular structure of data
 - \Rightarrow Pooling \Rightarrow Local summaries \Rightarrow Multi-resolution
- ► Structural information of data ⇒ Constrain space of models

Relationship between data elements given by a network

 \Rightarrow Modeled by a graph \mathcal{G} with N nodes and edge set \mathcal{E}

- ▶ $[\mathbf{x}]_i = Data \text{ value stored at node } i \Rightarrow Graph signal \mathbf{x} \in \mathbb{R}^N$
- ► Graph topology encoded in graph shift operator (GSO) $\mathbf{S} \in \mathbb{R}^{N \times N}$

$$[\mathbf{S}]_{ij} \neq 0 \quad \Longleftrightarrow \quad i = j \text{ or } (j, i) \in \mathcal{E}$$

Linear operation Sx locally relates data with underlying network

$$[\mathbf{S}\mathbf{x}]_i = \sum_{j \in \mathcal{N}_i} [\mathbf{S}]_{ij} [\mathbf{x}]_j \qquad ([\mathbf{S}]_{ij} = 0 \text{ if } (j, i) \notin \mathcal{E})$$

 \Rightarrow Linear combination of signal values in the one-hop neighborhood

Extend descriptive power of GSP ⇒ Assign a vector to each node ⇒ x : V → ℝ^F ⇒ x = {x^f}^F_{f=1}, x^f: graph signal for feature f

- ▶ Input signal defined over graph with N nodes \Rightarrow Select a node
- Gather values from repeated exchanges with neighbors
- Resultant signal collected at the node has a regular structure
 ⇒ Consecutive values encode nearby information in the graph
- Regular convolution linearly relates neighboring values
- Regular pooling constructs adequate neighborhood summaries
 ⇒ Effective aggregation of information from local to global

$$\mathbf{z}_{\boldsymbol{\rho}} = \left[[\mathbf{x}_0^g]_{\boldsymbol{\rho}}, [\mathbf{S}\mathbf{x}_0^g]_{\boldsymbol{\rho}}, [\mathbf{S}^2\mathbf{x}_0^g]_{\boldsymbol{\rho}}, [\mathbf{S}^3\mathbf{x}_0^g]_{\boldsymbol{\rho}}, \dots, [\mathbf{S}^{N-1}\mathbf{x}_0^g]_{\boldsymbol{\rho}} \right]$$

Input

$$\mathbf{z}_{\boldsymbol{\rho}} = \left[[\mathbf{x}_0^g]_{\boldsymbol{\rho}}, [\mathbf{S}\mathbf{x}_0^g]_{\boldsymbol{\rho}}, [\mathbf{S}^2\mathbf{x}_0^g]_{\boldsymbol{\rho}}, [\mathbf{S}^3\mathbf{x}_0^g]_{\boldsymbol{\rho}}, \dots, [\mathbf{S}^{N-1}\mathbf{x}_0^g]_{\boldsymbol{\rho}} \right]$$

$$\mathbf{z}_{\boldsymbol{\rho}} = \left[[\mathbf{x}_0^g]_{\boldsymbol{\rho}}, [\mathbf{S}\mathbf{x}_0^g]_{\boldsymbol{\rho}}, [\mathbf{S}^2\mathbf{x}_0^g]_{\boldsymbol{\rho}}, [\mathbf{S}^3\mathbf{x}_0^g]_{\boldsymbol{\rho}}, \dots, [\mathbf{S}^{N-1}\mathbf{x}_0^g]_{\boldsymbol{\rho}} \right]$$

$$\mathbf{z}_{p} = \left[[\mathbf{x}_{0}^{g}]_{p}, [\mathbf{S}\mathbf{x}_{0}^{g}]_{p}, [\mathbf{S}^{2}\mathbf{x}_{0}^{g}]_{p}, [\mathbf{S}^{3}\mathbf{x}_{0}^{g}]_{p}, \dots, [\mathbf{S}^{N-1}\mathbf{x}_{0}^{g}]_{p} \right]$$

$$\mathbf{z}_{\rho} = \left[[\mathbf{x}_0^g]_{\rho}, [\mathbf{S}\mathbf{x}_0^g]_{\rho}, [\mathbf{S}^2\mathbf{x}_0^g]_{\rho}, [\mathbf{S}^3\mathbf{x}_0^g]_{\rho}, \dots, [\mathbf{S}^{N-1}\mathbf{x}_0^g]_{\rho} \right]$$

$$\left[\mathbf{u}_{1}^{fg}\right]_{n} = \left[\mathbf{h}_{1}^{fg} * \mathbf{z}_{p}\right]_{n} = \sum_{k=0}^{K_{1}-1} \left[\mathbf{h}_{1}^{fg}\right]_{k} \left[\mathbf{z}_{p}\right]_{n-k} = \sum_{k=0}^{K_{1}-1} \left[\mathbf{h}_{1}^{fg}\right]_{k} \left[\mathbf{S}^{n-k} \mathbf{x}_{0}^{g}\right]_{p}$$

$$\left[\mathbf{v}_{1}^{f}\right]_{n} = \rho_{1}\left(\left[\mathbf{u}_{1}^{f}\right]_{\mathbf{n}_{1}}\right) = \varrho_{1}\left(\left[\mathbf{z}_{\rho}\right]_{n \in \mathbf{n}_{1}}\right) = \varrho_{1}\left(\left[\mathbf{S}^{n}\mathbf{x}_{0}^{g}\right]_{\rho}\right)_{n \in \mathbf{n}_{1}}$$

Regular Convolution

• Input \mathbf{x}_0^g is a signal over known *N*-node graph

- Select node $p \in \mathcal{V} \Rightarrow$ Perform local exchanges
- Consecutive elements encode nearby neighbors

$$\mathbf{z}_{\rho} = \left[[\mathbf{x}_0^g]_{\rho}, [\mathbf{S}\mathbf{x}_0^g]_{\rho}, [\mathbf{S}^2\mathbf{x}_0^g]_{\rho}, \dots, [\mathbf{S}^{N-1}\mathbf{x}_0^g]_{\rho} \right]^{\mathsf{T}}$$

• Feature \mathbf{u}_1^{fg} is obtained from regular convolution

$$\left[\mathbf{u}_{1}^{fg}\right]_{n} = \left[\mathbf{h}_{1}^{fg} * \mathbf{z}_{p}\right]_{n} = \sum_{k=0}^{K_{1}-1} \left[\mathbf{h}_{1}^{fg}\right]_{k} \left[\mathbf{z}_{p}\right]_{n-k} = \sum_{k=0}^{K_{1}-1} \left[\mathbf{h}_{1}^{fg}\right]_{k} \left[\mathbf{S}^{n-k} \mathbf{x}_{0}^{g}\right]_{p}$$

 \Rightarrow Effectively relates neighboring information encoded by the graph

Aggregation Graph Neural Networks

Regular Pooling

• Regular pooling \Rightarrow **n**₁ := { α_1 consecutive elements of **u**₁^f}

$$\begin{split} \left[\mathbf{v}_{1}^{f} \right]_{n} &= \rho_{1} \left(\left[\mathbf{u}_{1}^{f} \right]_{\mathbf{n}_{1}} \right) = \varrho_{1} \left(\left[\mathbf{z}_{\rho} \right]_{n \in \mathbf{n}_{1}} \right) = \varrho_{1} \left(\left[\mathbf{S}^{n} \mathbf{x}_{0}^{g} \right]_{\rho} \right)_{n \in \mathbf{n}_{1}} \\ &= \varrho_{1} \left(\left[\mathbf{S}^{n+\alpha_{1}} \mathbf{x}_{0}^{g} \right]_{\rho}, \dots, \left[\mathbf{S}^{n-\kappa_{1}} \mathbf{x}_{0}^{g} \right]_{\rho} \right) \end{split}$$

 \Rightarrow Summary for the $\alpha_1 + K_1$ neighborhood (of the original graph)

► Regular downsampling \Rightarrow One every N_1 elements $\Rightarrow \mathbf{z}_1^f = \sigma_1(\mathbf{C}_1\mathbf{v}_1^f)$ $\Rightarrow [\mathbf{z}_1^f]_n \Rightarrow$ Summary from $[(n-1)N_1 + \alpha_1 + K_1]$ to $[nN_1 + \alpha_1 + K_1]$

r.		_
	• • • • • • • • • • • • • • • • • • • •	

Next Hidden Layers

- Input z^g_{ℓ-1} to layer ℓ exhibits a regular structure
 ⇒ Element [z^g_{ℓ-1}]_n represents a neighborhood summary
 - \Rightarrow Consecutive elements contain nearby summaries
- ► Apply regular convolution ⇒ Linearly relate nearby summaries

$$\left[\mathbf{u}_{\ell}^{fg}\right]_{n} = \left[\mathbf{h}_{\ell}^{fg} * \mathbf{z}_{\ell-1}^{g}\right]_{n} = \sum_{k=0}^{K_{1}-1} \left[\mathbf{h}_{1}^{fg}\right]_{k} \left[\mathbf{z}_{\ell-1}^{g}\right]_{n-k}$$

• Regular pooling $\Rightarrow \mathbf{n}_{\ell} = \{\alpha_{\ell} \text{ consecutive elements of } \mathbf{u}_{\ell}^{f}\}$

$$\left[\mathbf{v}_{\ell}^{f}\right]_{n} = \rho_{\ell}\left(\left[\mathbf{u}_{\ell}^{f}\right]_{\mathbf{n}_{\ell}}\right) = \varrho_{\ell}\left(\left[\mathbf{z}_{\ell-1}^{g}\right]_{n \in \mathbf{n}_{\ell}}\right)$$

⇒ Summary of a larger neighborhood ⇒ Change in resolution ► Regular downsampling ⇒ Select one every N_{ℓ} consecutive elements

$$\mathbf{z}_{\ell}^{f} = \sigma_{\ell} \left(\mathbf{C}_{\ell} \mathbf{v}_{\ell}^{f} \right)$$

 \Rightarrow Reduce dimensionality \Rightarrow Keep larger neighborhood summaries

- Entirely local architecture \Rightarrow Only one node selected
 - \Rightarrow Node gather all relevant information by local exchanges
 - \Rightarrow The desired output is obtained at a single node
- ► Collected data has regular structure ⇒ Traditional CNN ⇒ Existing results on CNNs can be used in the design
- ► Large networks might demand too many local exchanges ⇒ Long time to collect all relevant information

- Determine an initial subset of nodes (as opposed to only one)
 - \Rightarrow Aggregate local information (at those nodes) \Rightarrow Few exchanges
- ► Regular structure ⇒ Aggregation GNN stage (regular CNN) ⇒ Obtain descriptive features of the aggregated neighborhood
- Features collected at a subset of nodes of original graph
 - \Rightarrow Disseminate information $\ \Rightarrow$ Zero-pad to fit the graph
- ► Select a smaller subset of nodes ⇒ Aggregate local information
- ► Aggregation GNN stage ⇒ Construct descriptive features
- Zero-pad, exchange, and so on...

• Consider data matrix $\mathbf{X}_0^g \in \mathbb{R}^{N \times N}$ obtained from input \mathbf{x}_0^g

$$\mathbf{X}_{0}^{g} = \begin{bmatrix} \mathbf{S}^{0} \mathbf{x}_{0}^{g}, \mathbf{S}^{1} \mathbf{x}_{0}^{g}, \dots, \mathbf{S}^{N-1} \mathbf{x}_{0}^{g} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{S}^{0} \mathbf{x}_{0}^{g} \end{bmatrix}_{1} & \begin{bmatrix} \mathbf{S}^{1} \mathbf{x}_{0}^{g} \end{bmatrix}_{1} & \cdots & \begin{bmatrix} \mathbf{S}^{N-1} \mathbf{x}_{0}^{g} \end{bmatrix}_{1} \\ \begin{bmatrix} \mathbf{S}^{0} \mathbf{x}_{0}^{g} \end{bmatrix}_{2} & \begin{bmatrix} \mathbf{S}^{1} \mathbf{x}_{0}^{g} \end{bmatrix}_{2} & \cdots & \begin{bmatrix} \mathbf{S}^{N-1} \mathbf{x}_{0}^{g} \end{bmatrix}_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \begin{bmatrix} \mathbf{S}^{0} \mathbf{x}_{0}^{g} \end{bmatrix}_{N} & \begin{bmatrix} \mathbf{S}^{1} \mathbf{x}_{0}^{g} \end{bmatrix}_{N} & \cdots & \begin{bmatrix} \mathbf{S}^{N-1} \mathbf{x}_{0}^{g} \end{bmatrix}_{N} \end{bmatrix}$$

• Select a subset \mathcal{P}_1 of nodes of the original graph (\mathcal{P}_1 row selection)

• Perform Q_1 exchanges of information (Q_1 column selection)

$$\mathsf{z}_1^g(0,\rho) = \left[[\mathbb{S}^{\scriptscriptstyle 0} \mathsf{x}_0^g]_\rho, [\mathbf{S}^{\scriptscriptstyle 1} \mathsf{x}_0^g]_\rho, \cdots, [\mathbf{S}^{Q_1-1} \mathsf{x}_0^g]_\rho \right], \ \rho \in \mathcal{P}_1$$

⇒ Each node gathers information up to the Q₁-hop neighborhood
 Data gathered at each node has regular structure

 \Rightarrow Aggregation GNN with L_1 layers at each node \Rightarrow F_1 features

The output z₁(L₁, p) ∈ ℝ^{F₁} is obtained from Aggregation GNN
 ⇒ Defined only over the set P₁ of nodes ⇒ Not a graph signal
 ⇒ No GSO to keep exchanging information with neighbors
 Define the collection of feature f at each node

$$\mathbf{x}_1^f = \left[[\mathbf{z}_1(\mathcal{L}_1, \rho_1)]_f, \dots, [\mathbf{z}_1(\mathcal{L}_1, \rho_{|\mathcal{P}_1|})]_f \right], \ p_k \in \mathcal{P}_1$$

 \Rightarrow Zero-pad to obtain $\tilde{\bm{x}}_1^f = \mathcal{D}_1^{\mathsf{T}} \bm{x}_1^f$ that fits the original graph

- ▶ For outer layer $r \Rightarrow \text{Select a subset } \mathcal{P}_r \subset \mathcal{P}_{r-1}$ to further collect data
- Perform Q_r exchanges with neighbors \Rightarrow Regular structure data

$$\mathbf{z}_r^g(0,p) = \left[[\mathbf{\tilde{x}}_{r-1}^g]_p, [\mathbf{S}\mathbf{\tilde{x}}_{r-1}^g]_p, \cdots, [\mathbf{S}^{Q_r-1}\mathbf{\tilde{x}}_{r-1}^g]_p \right], \ p \in \mathcal{P}_r$$

⇒ Q_r -hop nodes have information from their Q_{r-1} neighborhood ► Aggregation GNN to create F_r features ⇒ $\mathbf{z}_r(L_r, p) \in \mathbb{R}^{F_r}$

- Consider a stochastic block model (SBM) with N = 100 nodes
 - \Rightarrow C = 5 communities, 20 nodes each, $p_{c_ic_i}=$ 0.8, $p_{c_ic_j}=$ 0.2
- Assume node c started a diffusion at time t = 0

 \Rightarrow Graph signal \mathbf{e}_c has 1 in node c and zeros elsewhere

- Consider observations $\mathbf{x} = \mathbf{A}^t \mathbf{e}_c$ for some unknown t > 0
- Localize the community c that originated the diffusion
- Dataset: 8,000 training, 2,000 validation, 200 test
- ▶ 10 graph realizations, 10 dataset realizations for each graph
- ► ADAM optimizer: learning rate 0.001; 40 epochs, 100 batch size
- Degree, experimentally designed sampling (EDS) and spectral proxies (SP)

- (A): L = 2, $K^{(1)} = 4$, $K^{(2)} = 8$, $F^{(1)} = 16$, $F^{(2)} = 32$, half-pooling
- (MN): $K^{(1)} = K^{(2)} = 3$, $F^{(1)} = 16$, $F^{(2)} = 32$, $P^{(1)} = 10$, $P^{(2)} = 5$, $Q^{(1)} = 7$, $Q^{(2)} = 5$, half-pooling
- Clustering (C): L = 2, $F^{(1)} = F^{(2)} = 32$, $K^{(1)} = K^{(2)} = 5$

Architecture	Accuracy
Aggregation (A) Degree	94.2(±4.7)%
Aggregation (A) EDS	96.5(±3.1)%
Aggregation (A) SP	95.2(±4.4)%
Multinode (MN) Degree	96.1(±3.4)%
Multinode (MN) EDS	96.0(±3.5)%
Multinode (MN) SP	97.3(±2.7)%
Graph Coarsening (C) Clustering	87.4(±3.2)%

- Same source localization problem ⇒ Identify community ⇒ 234 Facebook network subgraph with 2 communities (McAuley '12)
- Dataset: 8,000 training, 2,000 validation, 200 test
- 10 random dataset realizations
- ADAM optimizer: learning rate 0.001; 80 epochs, 100 batch size
- Degree, experimentally designed sampling (EDS) and spectral proxies (SP)

• (A):
$$L = 2$$
, $K^{(1)} = K^{(2)} = 4$, $F^{(1)} = 32$, $F^{(2)} = 64$, half-pooling

- (MN): $K^{(1)} = K^{(2)} = 3$, $F^{(1)} = 16$, $F^{(2)} = 32$, $P^{(1)} = 30$, $P^{(2)} = 10$, $Q^{(1)} = Q^{(2)} = 5$, half-pooling
- Clustering (C): L = 2, $F^{(1)} = F^{(2)} = 32$, $K^{(1)} = K^{(2)} = 5$

Architecture	Accuracy
Aggregation (A) Degree	95.8(±1.6)%
Aggregation (A) EDS	96.9(±1.2)%
Aggregation (A) SP	95.8(±1.4)%
Multinode (MN) Degree	97.6(±1.3)%
Multinode (MN) EDS	96.8(±1.2)%
Multinode (MN) SP	99 .0(±0.8)%
Graph Coarsening (C) Clustering	95.2(±1.2)%

- Identify author of text excerpt
- Build word adjacency network
 From training excerpts
- Word frequency as graph signal
- ▶ 19th century authors
 ⇒ Emily Brontë

- Dataset: 546 texts by Brontë to build WAN, 1000 words (nodes)
 \$\Rightarrow\$ 1,092 training texts excerpts, 272 testing text excerpts
 ADAMA vizier in a second s
- ADAM optimizer: learning rate 0.001; 40 epochs, 100 batch size

- ► (A): L = 3, $K^{(1)} = 6$, $K^{(2)} = K^{(3)} = 4$, $F^{(1)} = 32$, $F^{(2)} = 64$, $F^{(3)} = 128$, half-pooling
- (MN): $K^{(1)} = K^{(2)} = 3$, $F^{(1)} = 16$, $F^{(2)} = 32$, $P^{(1)} = 30$, $P^{(2)} = 10$, $Q^{(1)} = Q^{(2)} = 5$, half-pooling
- Clustering (C): L = 2, $F^{(1)} = F^{(2)} = 32$, $K^{(1)} = K^{(2)} = 5$

Architecture	Accuracy
Aggregation (A) Degree	69.5(±2.0)%
Aggregation (A) EDS	71.0(±2.8)%
Aggregation (A) SP	69.2(±4.0)%
Multinode (MN) Degree	80.4(±2.0)%
Multinode (MN) EDS	80.5(±2.6)%
Multinode (MN) SP	79.9(±2.8)%
Graph Coarsening (C) Clustering	65.2(±5.0)%

- ► Regularize neural networks to exploit underlying graph topology
 - \Rightarrow Local architecture $\ \Rightarrow$ Exchanges with neighboring nodes
- ► Aggregation GNN: collects data at one node ⇒ Regular structure
 - \Rightarrow Process regular data by using traditional CNNs
 - \Rightarrow Multi-node GNN: avoids the need of a large number of exchanges
- Tested on source localization and authorship attribution
- ▶ Journal: IEEE Trans. Signal Process., 67(10), 1034-1049, Feb. 2019.
- Other extensions in graph neural networks:
 - \Rightarrow Extend nonlinearities to include neighborhoods: arXiv:1903.12575, today 6pm, syndicate 1.
 - ⇒ Stability of GNNs under topology perturbations: arXiv:1905.04497
 - ⇒ Gated graph recurrent neural networks: arXiv:1903.01888
 - \Rightarrow Generalization through edge-varying recursions: arXiv:1903.01298
 - \Rightarrow Application to learning decentralized controllers: arXiv:1903.10527