Aggregation Graph Neural Networks

Fernando Gama, Antonio G. Marques,
Geert Leus & Alejandro Ribeiro

Dept. of Electrical and Systems Engineering
University of Pennsylvania

IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP)
Brighton, UK — May 16, 2019

fgama@seas.upenn.edu Aggregation Graph Neural Networks 1/23

Graph Neural Networks

v

Neural Networks = Information processing architectures
= Linear transform followed by activation function

v

Design linear transform to fit a training set = Generalization

= Minimize a cost function over the training set = Learn

v

Linear transforms depend on the size of data = Do not scale

v

Convolutional Neural Networks = Regularize linear operation

= Linear transform is now a bank of filters = Convolution

™

linear transform bank of filters

fgama@seas.upenn.edu Aggregation Graph Neural Networks 2/23

Graph Neural Networks

» Network data =- Data elements related by pairwise relationships

= Irregular structure =- Convolution does not work

Wireless sensor networks Power grids Transportation network Team of autonomous agents

» Aggregation graph neural networks
= Exploit underlying graph topology
= Regularize linear transform = Local architecture
= Tools from Graph Signal Processing (GSP) framework

fgama@seas.upenn.edu Aggregation Graph Neural Networks

3/23

Neural Networks (NNs)

v

Training set 7 = {(x,y)} with input-output pairs (x,y)

v

Learning = Estimate output § associated with input x ¢ T
= Adopt a neural network architecture to map between x and y

v

Layer ¢ = Linear transform followed by pointwise nonlinearity
= Cascade L layers

X1 20'1(A1X)7 ey X[:Jg(Angfl), ey XLIO'L(ALXL,1>

v

Use 7 to find {A,} that optimize loss function > - L(y,x)

X6 & =

fgama@seas.upenn.edu Aggregation Graph Neural Networks 4/23

Convolutional Neural Networks (CNNs)

» Linear transform A, =- Contains parameters to learn
= Depends on the size of the input data

= Curse of dimensionality, large datasets, computationally costly, ...

» CNNs = Regularize linear transform =- Small-support filters
= Number of learnable parameters independent of size of data
= Filtering = Output computed by convolution
= Exploit underlying regular structure of data
= Pooling = Local summaries = Multi-resolution

» Structural information of data = Constrain space of models

fgama@seas.upenn.edu Aggregation Graph Neural Networks 5/23

Network Data

v

Relationship between data elements given by a network
= Modeled by a graph G with N nodes and edge set £

v

[x]; =Data value stored at node i = Graph signal x € RV
Graph topology encoded in graph shift operator (GSO) S € RVXN

v

[S]li #0 <= i=jor(j,i)e&

» Linear operation Sx locally relates data with underlying network

[Sx]i = > [S]y[x];

JEN;

= Linear combination of signal values in the one-hop neighborhood

v

Extend descriptive power of GSP = Assign a vector to each node
= x:V = RF = x={x"}f_,, x: graph signal for feature f

fgama@seas.upenn.edu Aggregation Graph Neural Networks 6/23

Aggregation Graph Neural Networks

v

Input signal defined over graph with N nodes = Select a node

v

Gather values from repeated exchanges with neighbors

v

Resultant signal collected at the node has a regular structure

= Consecutive values encode nearby information in the graph

v

Regular convolution linearly relates neighboring values

v

Regular pooling constructs adequate neighborhood summaries

= Effective aggregation of information from local to global

fgama@seas.upenn.edu Aggregation Graph Neural Networks 7/23

Aggregation

Input .

Zp = [[Xg]pv }

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23

Aggregation

Input oo

2, = | §15. [SE],. |

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23

Aggregation

Input oo

2o = |[xE1, (%615 (S5, |

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23

Aggregation

Input e o o o

2 = X1 [5%61o: [Sx5 . [S"xE],. |

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23

Aggregation

Input ®© 0 06 06 06 0 0 0600060006060 0000600600000 000 00

2o = [[xE1, (55611 [S788 1o [S™x8 .. SV 'xE],

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23

Aggregation GNN

Input

Convolution

Ki—1 Ki—1

f], = [] = 20 (0] [oo] = 3 (o, [s],

fgama@seas.upenn.edu

k=0 k=0

Aggregation Graph Neural Networks

Aggregation GNN

Input @ 0 0000 006060 06000 0000606060000 0060000 00
Convolution M....
Pooling

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23

Aggregation GNN

Input ®© 0 06 06 06 0 0 0600060006060 0000600600000 000 00

Convolution m—o—’—o—o—“—o—o—o—t o o oo

Pooling

Output

2 = 01(Cyvi)

fgama@seas.upenn.edu Aggregation Graph Neural Networks 8/23

Regular Convolution

» Input x5 is a signal over known N-node graph
» Select node p € V = Perform local exchanges
» Consecutive elements encode nearby neighbors
T
— g g 2,8 N—-1_8
Zp = {[Xo]pa [Sx5p, [S°xG)p, - -+ [ST " x5]p
> Feature u{g is obtained from regular convolution
Ki—1 Ki—1
], = [0 wme] = 20 [WF] [=e],_, = 20 (W], [s<]
u = |hf x2z = h z = h S x
|: 1 n 1 P n ;) 1 k P n—k kz:*() ! k 0 P

= Effectively relates neighboring information encoded by the graph

[R B |

fgama@seas.upenn.edu Aggregation Graph Neural Networks 9/23

Regular Pooling

» Regular pooling = n; := {a; consecutive elements of uf}

], =on ((l],) =or (],) = (fs4],)
— o ([5n] o s])

= Summary for the oy + Kj neighborhood

» Regular downsampling = One every N; elements = z{ = al(Clvf)
= [2f], = Summary from [(n — 1)N; + a1 + Ki] to [nN; + a1 + Ki]

fgama@seas.upenn.edu Aggregation Graph Neural Networks 10/23

Next Hidden Layers

> Input z§_; to layer £ exhibits a regular structure
= Element [2§_,], represents a neighborhood summary
= Consecutive elements contain nearby summaries
» Apply regular convolution = Linearly relate nearby summaries

Ki—1

o] = [wfeatn] =30 W] [25]

k=0

» Regular pooling = n; = {a, consecutive elements of uf}

il =or ([01],) = o ([-),.,.)

= Summary of a larger neighborhood =- Change in resolution
» Regular downsampling = Select one every N, consecutive elements

Zz =0y (Cgvg)

= Reduce dimensionality = Keep larger neighborhood summaries

fgama@seas.upenn.edu Aggregation Graph Neural Networks 11/23

Aggregation GNN: Observations

» Entirely local architecture =- Only one node selected
= Node gather all relevant information by local exchanges

= The desired output is obtained at a single node

> Collected data has regular structure =- Traditional CNN
= Existing results on CNNs can be used in the design

> Large networks might demand too many local exchanges

= Long time to collect all relevant information

fgama@seas.upenn.edu Aggregation Graph Neural Networks 12/23

Multi-Node Aggregation GNN

» Determine an initial subset of nodes
= Aggregate local information = Few exchanges
» Regular structure =- Aggregation GNN stage
=- Obtain descriptive features of the aggregated neighborhood
> Features collected at a subset of nodes of original graph
= Disseminate information = Zero-pad to fit the graph
> Select a smaller subset of nodes = Aggregate local information
» Aggregation GNN stage = Construct descriptive features
» Zero-pad, exchange, and so on...

fgama@seas.upenn.edu Aggregation Graph Neural Networks 13/23

Multi-Node Aggregation GNN

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23

Multi-Node Aggregation GNN

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23

Multi-Node Aggregation GNN

Input o o o

fgama@seas.upenn.edu Aggregation Graph Neural Networks 14/23

Multi-Node Aggregation GNN

Input e o o o

Aggregation Graph Neural Networks

Multi-Node Aggregation GNN

Aggregation Graph Neural Networks

Multi-Node Aggregation GNN

Input

Aggregation Graph Neural Networks

Multi-Node Aggregation GNN

Input ‘ ooooooooo ‘ ooooooooo ‘ ‘ ooooooooo

Convolution \ e b e Hu \ oo oo oo HHJ « S80S, . Hu

Pooling | —— u | [m . u

Aggregation Graph Neural Networks

Multi-Node Aggregation GNN

Input ‘ ooooooooo ‘ ooooooooo ‘ ‘ ooooooooo

Convolution

Pooling

i
i
i

Output

Aggregation Graph Neural Networks

Multi-Node Aggregation GNN

Input ‘ ooooooooo ‘ ooooooooo ‘ ‘ ooooooooo

Convolution

Pooling

i
i
i

Output

Aggregation Graph Neural Networks

Multi-Node Aggregation GNN

Input ‘ ooooooooo ‘ ooooooooo ‘ ‘ ooooooooo

Convolution

Pooling

i
i
i

Output

Aggregation Graph Neural Networks

Multi-Node Aggregation GNN

Input

Convolution

Pooling

Output

Aggregation Graph Neural Networks

Multi-Node Aggregation GNN

Input

Convolution

Pooling

Output

Aggregation Graph Neural Networks

Multi-Node Aggregation GNN: First Layer

» Consider data matrix X§ € RV*N obtained from input x§
[X§]1 S X§]1 [ijxgh
XE = [xE.S'xE, .. SV IxE] = [’.(0]2 S ’.(o]z S .Xo]z
il (S o [SY
> Select a subset P; of nodes of the original graph

v

Perform @ exchanges of information

#0.0) = [I* W18 L+ 1528 p ey

=- Each node gathers information up to the Q;-hop neighborhood
» Data gathered at each node has regular structure

= Aggregation GNN with L layers at each node = F; features

fgama@seas.upenn.edu Aggregation Graph Neural Networks 15/23

Next layer: Dimension mismatch

v

The output z;(Ly, p) € Rt is obtained from Aggregation GNN
= Defined only over the set P; of nodes =- Not a graph signal
= No GSO to keep exchanging information with neighbors

v

Define the collection of feature f at each node
x] = [Z1(L1,P1)]f,~-~7[Z1(L1,P|7>1|)]f} ., Pk € Py

= Zero-pad to obtain Xf = D] x{ that fits the original graph

v

For outer layer r = Select a subset P, C P,_; to further collect data

v

Perform @, exchanges with neighbors = Regular structure data

26(0,p) = | [R5, [S%E_Jp -+ [S¥TREL),] L pEPs

= Q,-hop nodes have information from their Q,_; neighborhood

» Aggregation GNN to create F, features = z,(L,,p) € RF

fgama@seas.upenn.edu Aggregation Graph Neural Networks 16/23

Numerical Experiments: Source Localization

» Consider a stochastic block model (SBM) with N = 100 nodes
= C =5 communities, 20 nodes each, p., = 0.8, p;; = 0.2
» Assume node c started a diffusion at time t =0
= Graph signal e. has 1 in node ¢ and zeros elsewhere
» Consider observations x = Ate. for some unknown t > 0

» Localize the community ¢ that originated the diffusion

» Dataset: 8,000 training, 2,000 validation, 200 test
» 10 graph realizations, 10 dataset realizations for each graph
» ADAM optimizer: learning rate 0.001; 40 epochs, 100 batch size

» Degree, experimentally designed sampling (EDS) and spectral proxies (SP)

fgama@seas.upenn.edu Aggregation Graph Neural Networks 17/23

Source Localization: Results

> (A): L=2 KD =4 K® =8, FV) =16, F» = 32, half-pooling

> (MN): K& = k@ =3, F) = 16, F® =32 PO =10, P? =5, QW =7, Q@ =5,
half-pooling

> Clustering (C): L =2, FU = F@ =32 kW = k@ =5

Architecture Accuracy

Aggregation (A) Degree 94.2(+4.7)%
Aggregation (A) EDS 96.5(+3.1)%
Aggregation (A) S 95.2(+4.4)%
Multinode (MN) Degree 96.1(£3.4)%
Multinode (MN) EDS 96.0(£3.5)%
Multinode (MN) SP 97.3(+£2.7)%

Graph Coarsening (C) Clustering 87.4(£3.2)%

fgama@seas.upenn.edu Aggregation Graph Neural Networks 18/23

Numerical Experiments: Facebook network

» Same source localization problem = Identify community

= 234 Facebook network subgraph with 2 communities (McAuley '12)

» Dataset: 8,000 training, 2,000
validation, 200 test

10 random dataset realizations

» ADAM optimizer: learning rate
0.001; 80 epochs, 100 batch

size

» Degree, experimentally
designed sampling (EDS) and
spectral proxies (SP)

fgama@seas.upenn.edu Aggregation Graph Neural Networks 19/23

Facebook Network: Results

> (A): L=2 KO =K? =4, FO =32 F? = 64, half-pooling

> (MN): KO = K@ =3, FO =16, F® =32, pM =30, P? = 10, QY = Q@ =5,
half-pooling

> Clustering (C): L =2, FU = F@ =32 kW) = k@ =5

Architecture Accuracy

Aggregation (A) Degree 95.8(+1.6)%
Aggregation (A) EDS 96.9(+£1.2)%
Aggregation (A) S 95.8(+1.4)%
Multinode (MN) Degree 97.6(£1.3)%
Multinode (MN) EDS 96.8(+1.2)%
Multinode (MN) SP 99.0(+0.8)%

Graph Coarsening (C) Clustering 95.2(£+1.2)%

fgama@seas.upenn.edu Aggregation Graph Neural Networks 20/23

Numerical Experiments: Authorship Attribution

v

Identify author of text excerpt Ry

v

Build word adjacency network

= From training excerpts

v

Word frequency as graph signal

v

19th century authors
= Emily Bronté

v

Dataset: 546 texts by Bronté to build WAN, 1000 words
= 1,092 training texts excerpts, 272 testing text excerpts
ADAM optimizer: learning rate 0.001; 40 epochs, 100 batch size

v

fgama@seas.upenn.edu Aggregation Graph Neural Networks 21/23

Authorship Attribution: Results

> (A): L=3 KU =6 K® =K =4, FO =32 F® = 64, F® = 128, half-pooling

> (MN): KO = K@ =3, FO =16, F® =32, pU =30, P? =10, QY = Q@ =5,
half-pooling

> Clustering (C): L =2, FU = F@ =32 kM) = k@ =5

Architecture Accuracy

Aggregation (A) Degree 69.5(+2.0)%
Aggregation (A) EDS 71.0(£2.8)%
Aggregation (A) S 69.2(£+4.0)%
Multinode (MN) Degree 80.4(£2.0)%
Multinode (MN) EDS 80.5(+2.6)%
Multinode (MN) SP 79.9(2.8)%

Graph Coarsening (C) Clustering 65.2(£+5.0)%

fgama@seas.upenn.edu Aggregation Graph Neural Networks 22/23

Conclusions & Other Extensions

v

Regularize neural networks to exploit underlying graph topology
= Local architecture = Exchanges with neighboring nodes

v

Aggregation GNN: collects data at one node =- Regular structure
= Process regular data by using traditional CNNs
= Multi-node GNN: avoids the need of a large number of exchanges

v

Tested on source localization and authorship attribution

v

Journal: IEEE Trans. Signal Process., 67(10), 1034-1049, Feb. 20109.

P Other extensions in graph neural networks:
= Extend nonlinearities to include neighborhoods: arXiv:1903.12575, today 6pm, syndicate 1.
= Stability of GNNs under topology perturbations: arXiv:1905.04497
= Gated graph recurrent neural networks: arXiv:1903.01888
= Generalization through edge-varying recursions: arXiv:1903.01298
= Application to learning decentralized controllers: arXiv:1903.10527

fgama@seas.upenn.edu Aggregation Graph Neural Networks 23/23

