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Discrete-Valued Vector Reconstruction

Reconstruction of a discrete-valued vector x € {r, ..., rL}N (ri <--<rp)
from its underdetermined linear measurement y = Ax +v € IRM

(M < N)
y = A X + v
reconstruction avelellleclilely
x 4+ overloaded MIMO signal detection [1]

4 multiuser detection [2]
4+ faster-than-Nyquist signaling [3]

[1] K. K. Wong, A. Paulraj, and R. D. Murch, “Efficient high-performance decoding for overloaded MIMO antenna
systems,” |IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1833-1843, May 2007.

[2] H. Zhu and G. B. Giannakis, “Exploiting sparse user activity in multiuser detection,” IEEE Trans. Commun., vol. 59,
no. 2, pp. 454-465, Feb. 2011.

[3] J. E. Mazo, “Faster-than-Nyquist signaling,” Bell Syst. Tech. J., vol. 54, no. 8, pp. 1451-1462, 1975.
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Reconstruction Methods (1/3)

4 Linear minimum mean-square-error (LMMSE) approach

v Low complexity
- The performance is degraded in underdetermined problems

4 Maximum likelihood (ML) approach

perform exhaustive search to reconstruct X € {ry, ..., rL}N

. 1
minimize —||y —Asll%
se{ry, ..., r}V 2

v Good performance
- The computational complexity is prohibitive in large-scale problems

In large-scale underdetermined problems, we require a low-complexity method
which can achieve reasonable performance
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Reconstruction Methods (2/3)

4+ Box relaxation method [4]

relax the ML method to convex optimization
under the box constraint s € [ry, ;1Y (1] < -+ < 1p)

minimize —||y —Asll%
s€(ry, rL]N

(binary phase shift keying) N
Ex. For the reconstruction of BPSK signals x € {—1, 1},

box relaxation problem is given by

minimize —||y —Asll%
se[—1, 11V

— N, ——— >

—1 1 S

[4] P. H. Tan, L. K. Rasmussen, and T. J. Lim, “Constrained maximum-likelihood detection in CDMA,"” |IEEE Trans.
Commun., vol. 49, no. 1, pp. 142-153, Jan. 2001.
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Reconstruction Methods (3/3)

4 Sum of absolute values (SOAV) optimization [5]
relax the ML method to convex optimization

L
by adding regularizerz g/ls —rd|l; based on the fact that
=1 T x — 1,1 has some zero elements
parameter (and sometimes becomes sparse)
because x € {r,...,r; }"

A=[11 - 1]"

| L
SOAV optimization: minimize —||y —AS”% + Z q.lls —r 1|,
seRN 2 e

SOAV optimization can take the probability distribution of unknown variables
py,:=Pr(x,=r,) (£=1,...,L) into consideration

[5] M. Nagahara, “Discrete signal reconstruction by sum of absolute values,” IEEE Signal Process. Lett., vol. 22, no. 10,
pp. 1575-1579, Oct. 2015.
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Asymptotic SER of Box Relaxation Method

Asymptotic symbol error rate (SER) of box relaxation method
has been studied via convex Gaussian min-max theorem (CGMT) [6], [7]

Ex. BPSK'signals  astimate by box relaxation method

. :/ Assumption:
SER: —IISlgn(xBOX) — x||0 4 measurement matrix A: zero mean i.i.d. Gaussian
N 4 noise vector V: zero mean i.i.d. Gaussian

... M\N - o
large system limit (MIN = A)

CDF of the standard Gaussian distribution

1
asymptotic SER: 1 -P <—>

T*
" characterized by an optimization problem

[6] C. Thrampoulidis, E. Abbasi, and B. Hassibi, “Precise error analysis of regularized M-estimators in high dimensions,”

|IEEE Trans. Inf. Theory, vol. 64, no. 8, pp. 5592-5628, Aug. 2018.
[7] C. Thrampoulidis, W. Xu, and B. Hassibi, “Symbol error rate performance of box-relaxation decoders in massive

MIMO,” IEEE Trans. Signal Process., vol. 66, no. 13, pp. 3377-3392, Jul. 2018.
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Purpose of This Study

Only a few theoretical aspects are known for the SOAV optimization

o )X
minimize —|ly — As||5 + 2 q.lls — .||,
seRY 2 1

+ How to tune the parameter g, ?
+ How does the measurement ratio A = M/N affect the performance?

Purpose of This Study

analyze the asymptotic performance of discrete-valued vector
reconstruction based on the SOAV optimization

modify
@ SOAV optimization > Box-SOAV optimization

@ derive the asymptotic SER of Box-SOAV by using the CGMT framework
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Main Result

Box-SOAV Optimization (1/2)

To make the analysis simpler,
we modify the SOAV optimization to Box-SOAV optimization

SOAV optimization

L N
minimize —|ly — As||; + Z qlls — rA|ly
seRN 2 /1

add box constraint s € [ry, 11"
(In usual, the performance does not change so much)

Box-SOAV optimization

L .
minimize —|ly — As||; + Z qlls — r Al
selr, i1V 2 i
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Box-SOAV Optimization (2/2)

Box-SOAV optimization can be solved by proximal splitting methods [8]

L -
minimize —||ly — As||5 + 2,6]/||S—’”f1||1
selry ' 2 s

indicator function for s € [ry, r;]"

N
1 (L N FG6) = {O (SEE’H, I’LiN)
minimize —||y — As||5 + Z%||S—i”g1||1+f(s) 0o (s & [y, r1")
seRN 2 =
N Y,
= f(s)

proximity operator PTOny(S) (y >0) Ex. (r,mn,r3)

1 —
can be easily calculated = 10D / R
1 \)
(proxyf(s) ;= arg min {yf(u) -+ 5||u — s||%}> J .......... —1 n
ueRy

[8] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal processing,” in Fixed-point algorithms for
inverse problems in science and engineering. Springer, 2011.




Main Result

Main Result

1 Assumption:
SER: —||O(x) — x”o 4+ A : zero mean i.i.d. Gaussian
N \ - 4 VP :zero mean i.i.d. Gaussian
quantization to the nearest ',
large system limit M,N — o
(M/N = A)
asymptotic SER: CDF of the standard Gaussian distribution

2\ (VA
(B ) Y 2)

! L
+ 0= (Z%> - (Z%> (@) =—00,Qpy =00, 1p=—00, I ;| = )
k=1 k=t

+ p,=Pr(x, =r,)

4 o*, f*: optimizer of problem max min F(a, )
p>0 a>0  convex-concave function
associated with Box-SOAV optimization
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Simulation Results

Example 1

Reconstruction of binary vector x € {0,1}"

+ measurement ratio: A = (.75
+ distribution: Pr(x, = 0) = 0.8

Pr(x, = 1) = 0.2 )
+ SNR: 15 dB 0 1

.o ]
Box-SOAV: minimize —||y —Asll% + qlIsll{ + g»lls — 1|4
se[o, 11y 2

For s € [0,1],
qilsl + qls — 1| = g5 — go(s — 1)
= (g — g9,)s + (const.)
N

minimize l||y —As|3+ (g, — g )Z e
se[0,1]V 2 2 A\ L. \2 n

n=1

parameter



Simulation Result

SER

A empirical (N = 500)
m empirical (N = 1000)
(N
]

1071+ empirical (N = 1500)| | The theoretical prediction agrees well
| theoretica with the empirical performance

SER

best parameter value

0 0.02 0.04 0.06 0.08 0.1
qd1 — 4>



Simulation Results

Example 2

Reconstruction of discrete-valued vector x € {—1,0,1}

+ distribution: Pr(x, = — 1) = 0.25 (V= 1500)
PI’(.Xn — O) = 0.5 T I T
+ SNR: 20 dB
Z1 optimization | minimize —||y —Asll% + Al|s ||
seRY 2
Box relaxation | minimize —||y —As||%
se[-1,11Y 2
.1
SOAV minimize Elly —As|l3 + qlls + 1|, + g lIsll; + g5lls — 111,
s&

..
Box-SOAV | minimize —|ly —Asll5 + q,lls + 1I|; + g, lIsll; + gslls — 11I,
se[-1,11V 2

1 = 0.005, (g1, ¢, g3) = (1, 0.005, 1)



Simulation Result

SER vs Measurement Ratio

A /; optimization (empirical)
m Box relaxation (empirical)

10-*. ¢ SOAV (empirical)

| @ Box-50AV (empiric.al) The theoretical prediction agrees well
| —Box-SOAV (theoretical) with the empirical performance

0.7 0.8 0.9 1
A
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Conclusion

Summary of This Study

We have derived the theoretical asymptotic performance
of the Box-SOAV optimization

dd b traint
@ SOAV optimization ° e + Box-SOAV optimization

@ derive the asymptotic SER of Box-SOAV by using the CGMT framework

@ compare the theoretical prediction and the empirical performance
of the SOAV optimization and the Box-SOAV optimization

4 asymptotic distribution of estimates
Future Work yMprot o
4 optimization of quantization







4 o, f*: optimizer of problem max min F(a, /)
p>0 a>0  convex-concave function
associated with Box-SOAV optimization

aﬁ\/z+gvzﬂ\/z—l % +ﬁ\/ZE env X+—H
2 2 it VA

0 2 2\/Z a VA

Fa, p) =

+ 0V2 . Noise variance

a

pVA

f

ueR

1
4 envﬁf(z) = min { f(u) + E(M — 2)2}: Moreau envelope of

AV A

4 X : random variable whose distribution is Pr(X = r,) = p,

4 H: standard Gaussian random variable



