Statistical rank selection for incomplete low-rank matrices

Yao Xie
School of Industrial and Systems Engineering Georgia Institute of Technology

May 15, 2019

Joint work with Alexander Shapiro and Rui Zhang

Present at ICASSP 2019

Low-rank matrix completion

- Incomplete and noisy observations

$$
Y_{i, j}=X_{i, j}+\epsilon_{i, j}, \quad(i, j) \in \Omega \subset\left[m_{1}\right] \times\left[m_{2}\right]
$$

- Recommender systems

Example: Determine the number of sources from incomplete observations

$$
Y_{i, j}=X_{i, j}+\epsilon_{i, j}, \quad(i, j) \in \Omega \subset\left[m_{1}\right] \times\left[m_{2}\right]
$$

(Chen, Mitra '17)

Low-rank models

$$
Y_{i, j}=\underbrace{X_{i, j}}_{\text {low-rank }}+\epsilon_{i, j}, \quad(i, j) \in \Omega \subset\left[m_{1}\right] \times\left[m_{2}\right]
$$

low-rank

high-rank

Prior work

- Convex relaxation: noiseless
(Candes, Recht '08, Candes, Tao '08, Gross '09)

$$
\min _{Z}\|Z\|_{*} \text { subject to } Y_{i j}=Z_{i j},(i, j) \in \Omega
$$

- Convex relaxation robustness to noise (Candes, Plan '09, Negahban, Wainwright '10, Koltchinskii et al. '10)

$$
\min _{Z} \underbrace{f(Z ; Y)}_{\text {empirical loss }}+\lambda\|Z\|_{*}
$$

- Non-convex optimization

Burer, Monteiro '03, Rennie Srebro '05, Jain, Netrapalli, Sanghavi '12, Ma, Wang, Chi, Chen '17 ...

$$
\min _{U \in \mathbb{R}^{n_{1} \times r}, V \in \mathbb{R}^{n_{1} \times r}} \sum_{(i, j) \in \Omega}\left[\left(U V^{T}\right)_{i j}-Y_{i j}\right]^{2}+\text { regularizer }
$$

Motivation

- Select "rank" parameter in algorithm

$$
\min _{U \in \mathbb{R}^{n_{1} \times r}, V \in \mathbb{R}^{n_{1} \times r}} \sum_{(i, j) \in \Omega}[\underbrace{\left(U V^{T}\right)_{i j}}_{\text {low-rank } X}-Y_{i j}]^{2}+\text { regularizer }
$$

- Determine "true" rank when the underlying matrix is low-rank

$$
Y_{i, j}=\underbrace{X_{i, j}}_{\text {low-rank }}+\epsilon_{i, j}, \quad(i, j) \in \Omega \subset\left[m_{1}\right] \times\left[m_{2}\right]
$$

Problem formulation

Noisy and possibly biased observations of a subset of matrix entries

$$
Y_{i j}=X_{i j}^{*}+N^{-1 / 2} \Delta_{i j}+\varepsilon_{i j}, \quad(i, j) \in \Omega
$$

- $X^{*} \in \mathcal{M}_{r^{*}}$ low-rank matrix
- N effective sample size
- $\Delta_{i j}$ deterministic bias term
- $N^{1 / 2} \varepsilon_{i j} \xrightarrow{\text { in dist }} \mathcal{N}\left(0, \sigma_{i j}^{2}\right)$ variance can be different

Goal: determine r^{*} using statistical test procedure

Assumptions

Typical assumptions

- Non-adaptive, random sampling: each $(i, j) \in \Omega$ independently with probability p
- Random noise: i.i.d. sub-Gaussian noise
- Ground truth: M^{*} is low-rank

Here

- Ω is deterministic

Our contribution

- Develop a new statistical test procedure to determine the rank
- Solve a sequence of "fitting" problems with different r

$$
\min _{U \in \mathbb{R}^{n_{1} \times r}, V \in \mathbb{R}^{n_{1} \times r}} \sum_{(i, j) \in \Omega}\left[\left(U V^{T}\right)_{i j}-Y_{i j}\right]^{2}
$$

- Examine residuals to decide Example: true rank is 6 .

Table: sequential rank test

rank	p -value	$\hat{\sigma}^{2}(=Z)$	rank	p -value	$\hat{\sigma}^{2}(=Z)$
1	0.82	34995.5	5	0.84	5050.63
2	0.86	26751.3	$\mathbf{6}$	$\mathbf{0 . 4 3}$	$\mathbf{9 7 . 7}$
3	0.92	18719.6	7	0.76	96.6
4	0.62	11231.8	8	0.96	96.7

Formal results: How to select r ?

- Solve a sequence of weighted least squares test statistic

$$
T_{N}(r):=N \min _{Y \in \mathcal{M}_{r}} \sum_{(i, j) \in \Omega} w_{i j}\left(M_{i j}-Y_{i j}\right)^{2}
$$

$w_{i j}:=1 / \hat{\sigma}_{i j}^{2}$ with $\hat{\sigma}_{i j}^{2}$ being consistent estimates of $\sigma_{i j}^{2}$
\mathcal{M}_{r} : (manifold) of all rank- r matrices

- $\mathrm{m}=|\Omega|$ number of measurements

Asymptotic properties of test statistic

$$
T_{N}(r) \Rightarrow \chi^{2}\left(d f_{r}, \delta_{r}\right)
$$

1. degrees of freedom

$$
\mathrm{df}_{r}=|\Omega|-\operatorname{dim}\left(\mathcal{M}_{r}\right)=\mathrm{m}-r\left(n_{1}+n_{2}-r\right)
$$

2. noncentrality parameter

$$
\delta_{r}=\min _{H \in \mathcal{T}_{\mathcal{M}_{r}}\left(Y^{*}\right)} \sum_{(i, j) \in \Omega} \sigma_{i j}^{-2}\left(\Delta_{i j}-H_{i j}\right)^{2} .
$$

Sequential test procedures

- Sequentially test $r=1,2,3, \ldots$ using $T_{N}(r)$
- "null" hypothesis that the "true" rank is r^{*}
- null hypothesis is rejected if
$T_{N}(r)$ is large enough on the scale of the χ^{2} distribution
- perform such tests sequentially for increasing values of r

Table: sequential rank test

rank	p -value	$\hat{\sigma}^{2}(=\bar{Z})$	rank	p -value	$\hat{\sigma}^{2}(=\bar{Z})$
1	0.82	34995.5	5	0.84	5050.63
2	0.86	26751.3	$\mathbf{6}$	$\mathbf{0 . 4 3}$	$\mathbf{9 7 . 7}$
3	0.92	18719.6	7	0.76	96.6
4	0.62	11231.8	8	0.96	96.7

Additional comments

- Role of values $\Delta_{i j}$: suggest that "true" model is true only approximately
- noncentrality parameter

$$
\delta_{r}=\min _{H \in \mathcal{T}_{\mathcal{M}_{r}}\left(Y^{*}\right)} \sum_{(i, j) \in \Omega} \sigma_{i j}^{-2}\left(\Delta_{i j}-H_{i j}\right)^{2} .
$$

indicates the deviation from the exact rank r model.
"Single" matrix observation

- Suppose $N=1, \Delta_{i j}=0$ and $\varepsilon_{i j} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$.
- Consider a sequence of index set

$$
\Omega_{0} \supset \Omega_{1} \supset \Omega_{2} \supset \cdots \supset \Omega_{K}
$$

$$
\left|\Omega_{k-1}\right|-\left|\Omega_{k}\right|=L, \forall k=1 \cdots K
$$

- Let

$$
\begin{aligned}
X_{i} & =\min _{Y \in \mathcal{M}_{r}} \sum_{(i, j) \in \Omega_{i}}\left(M_{i j}-Y_{i j}\right)^{2}, \\
Z_{i} & =\left(X_{i-1}-X_{i}\right) / L
\end{aligned}
$$

- $\sqrt{K}\left(\bar{Z}-\sigma^{2}\right)$ converge in distribution to $\mathcal{N}\left(0,2 \sigma^{4} / L\right)$

Example: Determine the number of sources

rank	p-value	rank	p-value
$\mathbf{1}$	0.00	4	1.00
$\mathbf{2}$	$\mathbf{0 . 1 5}$	5	1.00
3	0.98	6	1.00

Summary

$$
Y_{i j}=X_{i j}^{*}+N^{-1 / 2} \Delta_{i j}+\varepsilon_{i j},(i, j) \in \Omega
$$

- How to select rank r ? Sequential χ^{2} test
- Test statistic

$$
T_{N}(r):=N \min _{Y \in \mathcal{M}_{r}} \sum_{(i, j) \in \Omega} w_{i j}\left(M_{i j}-Y_{i j}\right)^{2} \Rightarrow \chi^{2}\left(d f_{r}, \delta_{r}\right)
$$

rank	p-value	rank	p-value
1	0.00	4	1.00
$\mathbf{2}$	$\mathbf{0 . 1 5}$	5	1.00
3	0.98	6	1.00

- Role of values $\Delta_{i j}$: suggest that "true" model is true only approximately; non-central parameter δ_{r} indicates so

Thank you!

References

1. Matrix completion with deterministic pattern - a geometric perspective. A. Shapiro, Y. Xie, and R. Zhang. IEEE Transactions on Signal Processing. Volume: 67, Issue: 4, Feb.15, 152019
