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Secret Key Generation

Source Pxyyz

e Based on X™ and Y, Alice and Bob want to generate a secret key K
e Single forward transmission of helper data M"» over the public channel

e Noisy W, imposes a rate constraint R, = C'(W,)
¢ Noiseless W}, results in no rate constraint

e Eve intercepts M"r error-free (worst case from a security perspective)



Forward SK Capacity

Theorem: [Csiszar/Narayan '00], [Bassi et al. '16]

The forward SK capacity Csx(Wp, Pxy z) for source Pxy z and noisy public
channel W, is

Csk(Wp, Pxyz) = max [I(V;Y|U) - I(V;Z|U)]

where U and V' are auxiliary random variables that satisfy the Markov chain
relation U — V — X — (Y, Z) and further satisfy the rate constraint

IV; X

Y) < C(Wp).

Moreover, it may be assumed that V' = (U, V') where the cardinalities of the
alphabets of both U and V' are at most |X| + 1.

@ I. Csiszar and P. Narayan, “Common randomness and secret key generation with a helper,” IEEE Trans.
Inf. Theory, vol. 46, no. 2, pp. 344-366, Mar. 2000

G. Bassi, P. Piantanida, and S. Shamai (Shitz), “Secret key generation over noisy channels with common
randomness,” in Proc. IEEE Int. Symp. Inf. Theory, Barcelona, Spain, Jul. 2016, pp. 510-514



Forward SK Capacity (2)

o W, becomes noiseless for R, = C(W,) — oo and R, is inactive

Corollary: [Ahlswede/Csiszar '93]
The forward SK capacity Csk(Pxy z) for source Pxy 7 is

Csk(Pxyz) = max [I(V;Y|U) - I(V; Z|U)]
where U and V' are auxiliary random variables that satisfy the Markov chain

relation U — V — X — (Y, Z). Moreover, it may be assumed that V = (U, V')
where the cardinalities of the alphabets of both U and V’ are at most |X| + 1.

R. Ahlswede and I. Csiszédr, “Common Randomness in Information Theory and Cryptography-Part I:
Secret Sharing,” IEEE Trans. Inf. Theory, vol. 39, no. 4, pp. 1121-1132, Jul. 1993
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Fig. 1 — Schematic diagram of a general communication system.

The capacity C'(1W) of a discrete memoryless channel (DMC) W is

C(W)=maxI(X;Y) = max I(Px, W)
X Px

@ C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. 3, pp.
379-423, Jul. 1948



Capacity of DMCs

The capacity C'(1W) of a discrete memoryless channel (DMC) W is

c(wW) = m)?XI(X;Y) = n})axI(PX,W)

e Entropic quantities
o Single-letter

e Convex optimization problem

" Of particular relevance as it allows to compute the capacity C(W) as a
function of the channel W given by a convex optimization problem



Capacity of DMCs

The capacity C'(1W) of a discrete memoryless channel (DMC) W is

C(W)=maxI(X;Y) = max I(Px, W)
X Px

e Entropic quantities
o Single-letter

e Convex optimization problem

m Of particular relevance as it allows to compute the capacity C(W) as a
function of the channel W given by a convex optimization problem

What do we actually mean with “compute”?




Turing Machine

Tape
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0 Read/Write Head

Mathematical model of an abstract machine that manipulates symbols on a
strip of tape according to certain given rules

A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proc.
London Math. Soc., vol. 2, no. 42, pp. 230-265, 1936

A. M. Turing, “"On computable numbers, with an application to the Entscheidungsproblem. A correction,”
Proc. London Math. Soc., vol. 2, no. 43, pp. 544-546, 1937



Turing Machine (2)

e Turing machines can simulate any given algorithm and therewith provide a
simple but very powerful model of computation

e No limitations on computational complexity, unlimited computing capacity
and storage, and execute programs completely error-free

e Extends to programming languages which are then called Turing-complete
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Turing Machine (2)

e Turing machines can simulate any given algorithm and therewith provide a
simple but very powerful model of computation

e No limitations on computational complexity, unlimited computing capacity
and storage, and execute programs completely error-free

e Extends to programming languages which are then called Turing-complete

" Fundamental performance limits for today’s digital computers

> |deal concept to decide if the capacity can computed algorithmically
(without putting any constraints on the computational complexity)

A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proc.
London Math. Soc., vol. 2, no. 42, pp. 230-265, 1936

A. M. Turing, “"On computable numbers, with an application to the Entscheidungsproblem. A correction,”
Proc. London Math. Soc., vol. 2, no. 43, pp. 544-546, 1937



Computability

e Computable numbers are real numbers that are computable by Turing
machines

o A sequence {1y }nen is called a computable sequence if there exist
recursive functions a,b,s : N — N with b(n) # 0 for all n € N and

o pysma(n)
n=(—1)" )m

e Then a real number x is said to be computable if there exists a computable
sequence of rational numbers {r, },en such that

|z —rp| <277
R is the set of computable real numbers

R. I. Soare, Recursively Enumerable Sets and Degrees.  Berlin, Heidelberg: Springer-Verlag Berlin
Heidelberg, 1987



Computability (2)

¥ Based on this, we can define computable probability distributions and
computable channels

e We define the set of computable probability distributions P.(X") as the set
of all probability distributions

P € P(X) such that P(z) e R,, z € X
e Let CH. be the set of all computable channels, i.e., for a channel

WX — P(Y) we have W(-|z) € P.(Y) for every z € X



Computability (3)

Definition: Borel Computability

A function f : R. — R, is called Borel computable if there is an algorithm that
transforms each given computable sequence of a computable real z into a
corresponding representation for f(x).

e Turing's notion of computability conforms to Borel computability



Computability (3)

Definition: Borel Computability

A function f : R. — R, is called Borel computable if there is an algorithm that
transforms each given computable sequence of a computable real z into a
corresponding representation for f(x).

e Turing's notion of computability conforms to Borel computability

Capacity C'(W) = maxyx I(X;Y) is Borel computable

Proof outline:
® xlog, z, x €[0,1], is a Borel computable function
@® function Y zlog, x is computable
® function I(X;Y) is computable

©® C(W) =maxy [(X;Y) is a computable function since it is the maximum
of computable functions




Computability (4)

e There are weaker forms of computability including Markov computability
and Banach-Mazur computability

Definition: Markov Computability

A function f : R. — R, is called Markov computable if there is an algorithm
that converts an algorithm for a computable real x into an algorithm for f(x).

Definition: Banach-Mazur Computability

A function f : R. — R, is called Banach-Mazur computable if f maps any
given computable sequence {z,}52; of real numbers into a computable
sequence {f(x,)}>2, of real numbers.

J. Avigad and V. Brattka, “"Computability and analysis: The legacy of Alan Turing,” in Turing's Legacy:
Developments from Turing's Ideas in Logic, R. Downey, Ed. Cambridge, UK: Cambridge University
Press, 2014



Computability (4)

by restriction

f R — R computable Q

not always extendible,

F :R: — RB. Borel computable

Theorem of Celtin and
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not always extendible

f R — R continuous f : R. — R: continuous

Figure 5 from

J. Avigad and V. Brattka, “Computability and analysis: The legacy of Alan Turing,” in Turing’s Legacy:
Developments from Turing’s Ideas in Logic, R. Downey, Ed. = Cambridge, UK: Cambridge University
Press, 2014



Back to the Forward SK Capacity

The forward SK capacity Csk(Wp, Pxy z) for source Pxyz and noisy public
channel W, is

Csk(Wy, Pxyz) = max [I(V;Y|U) — I(V; Z|U)]

with U — V — X — (Y, Z) forming a Markov chain and further

I(V; X|Y) < C(W,).

The forward SK capacity Cskx(Pxy z) for source Pxyz is

Csk(Pxyz) = TS [I(V;Y|U) — I(V; Z|U)]

with U =V — X — (Y, Z) forming a Markov chain.




Back to the Forward SK Capacity

The forward SK capacity Csk(Wp, Pxy z) for source Pxyz and noisy public
channel W, is

Csk(Wy, Pxyz) = max [I(V;Y|U) - I(V;Z|U)]

with U — V — X — (Y, Z) forming a Markov chain and further

I(V; X|Y) < C(W,).

The forward SK capacity Cskx(Pxy z) for source Pxyz is

Csk(Pxyz) = TS [I(V;Y|U) — I(V; Z|U)]

with U =V — X — (Y, Z) forming a Markov chain.

QUESTION: Can we compute these capacity expressions?



Without Rate Constraint

For all |X| > 2, |Y| > 2, and |Z| > 2, the forward SK capacity

Csk(Pxyz) = max [I(V;Y|U) - I(V; Z|U)]

without public rate constraint for source Pxy z is Borel computable.

Proof outline:
® xlog,xz, x €[0,1], is a Borel computable function
@® function ) xlog, x is computable
® functions I(V;Y|U) and I(V; Z|U) are computable
0 Csk(Pxyz) =maxyy [I(V;Y|U) — I(V; Z|U)] is a computable function
since it is the maximum of computable functions v

e This can even be strengthened: Forward SK capacity Csk(Pxyz) is a
computable continuous function!
H. Boche, R. F. Schaefer, S. Baur, and H. V. Poor, “On the algorithmic computability of the

secret key and authentication capacity under channel, storage, and privacy leakage constraints,”
2018, submitted




With Rate Constraint

For all |X| > 2, || > 2, and |Z]| > 2, the forward SK capacity Csk(W,, Pxy z)
for the source Pxyz and the noisy public channel W, is not Banach-Mazur
computable.

Key ingredient:
e Proof by contradiction

o If Csk(W,, Pxyz) would be Banach-Mazur computable, then the halting
problem would be solvable!

" The forward SK capacity with rate-limited public public communication is
not Banach-Mazur and therewith also not Turing computable!



With Rate Constraint

For all |X| > 2, || > 2, and |Z]| > 2, the forward SK capacity Csk(W,, Pxy z)
for the source Pxyz and the noisy public channel W, is not Banach-Mazur
computable.

Key ingredient:
e Proof by contradiction

o If Csk(W,, Pxyz) would be Banach-Mazur computable, then the halting
problem would be solvable!

" The forward SK capacity with rate-limited public public communication is
not Banach-Mazur and therewith also not Turing computable!

ANSWER: The forward SK capacity is
e computable without public rate constraints and

e non-computable with public rate constraints!



Conclusions

e Computability of the forward SK capacity has been studied

e Sharp phase transition between being computable and non-computable

OO OO0 e

[— > Ry, e i :- ------ > IR . 5
Public Channel Public Channel
e Rate constraint R, inactive ¢ Rate constraint /7, active
o Csk(Pxyz) computable (even e Csk(Rp, Pxyz) non-computable
computable continuous function) (not even Banach-Mazur)

Rate constraint on the public communication not only affects the performance,
it is also turns an algorithmically non-tractable problem into a solvable problem!J




Conclusions (2)

Thank you for your attention!

e Many extensions and other open problems including secure communication
with active jammers [BSP '18], identification [BSP '18], secure authentication
[BSBP '19], detection of denial-of-service attacks [BSP '19] and many others

@ H. Boche, R. F. Schaefer, and H. V. Poor, “Performance evaluation of secure communication systems
on Turing machines,” in Proc. 10th IEEE Int. Workshop Inf. Forensics Security, Hong Kong, Dec. 2018,
pp. 1-7

@ H. Boche, R. F. Schaefer, and H. V. Poor, “Secure communication and identification systems — effective
performance evaluation on Turing machines,” 2018, submitted

@ H. Boche, R. F. Schaefer, S. Baur, and H. V. Poor, “On the algorithmic computability of the secret key
and authentication capacity under channel, storage, and privacy leakage constraints,” 2018, submitted

@ H. Boche, R. F. Schaefer, and H. V. Poor, "“Detectability of denial-of-service attacks on communication
systems,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process., Brighton, UK, May 2019



If time permits, another motivation for studying the computability.... )




Motivation

Status Quol

e several 100.000 new software products every year

e all main products of top leading software companies are insecure,
erroneous, and impossible to verify

e uncountable software updates to repair identified errors
e no secure infrastructure

e uncountable adversarial attacks on hardware and software (e.g. Vodafone
monitors every 2ms an attack on their system)

LA. Schénbohm, President of Federal Office for Information Security (BSI), at Technology
Innovation 2018, Feb 22, 2018



Verification

Industry with hard- YES  Verified hard- and

Certification agency

ware and software = (eg BSI) = software infrastruc-
products e ture

U NO
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e QUESTION: How can we design this?




Verification (2)

Implementation of (universal) Turing
solution of communi- machine to verify:
cation task: e security YES Verified hard- and
= . —  software infrastruc-
Protocol O [PINREIE o
@ Physical channels o efficiency
@ Attack classes o
U NO
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Verification (2)

Implementation of

solution of communi- to verify:
cation task: e security Verified hard- and
= . —  software infrastruc-
Protocol O [PINREIE i
@ Physical channels o efficiency
@ Attack classes o
U NO
e

w

¥ \erification framework based on Turing machines and computability as
developed in the beginning!



Turing Machine (2)

Definition: Turing Machine
A Turing machine ¥ given by
T:CS xCH xCP x N — {yes / no}

is a mapping with
%(CS,CH, CP, k) = yes

if and only if the performance requirements are satisfied and

1
C-R<Z (1)

where C' denotes the capacity.

For a given communication scenario CS, the verification of security and spectral
efficiency is called effective, if there exists a (universal) Turing machine such
that for all valid channel inputs, communication protocols CP, and all £ € N
the Turing machine always outputs the correct answer

.




Turing Machine (3)

e Within this framework, the task of the Turing machine is to answer the
following two questions:

Question 1: Are all information theoretic performance requirements (such as
probability of decoding error at the legitimate receiver or secrecy at an
eavesdropper) satisfied?

Question 2: Is effectiveness given in the sense that the gap 1/k to the optimal
performance limit can be controlled?




Turing Machine (3)

e Within this framework, the task of the Turing machine is to answer the
following two questions:

Question 1: Are all information theoretic performance requirements (such as
probability of decoding error at the legitimate receiver or secrecy at an
eavesdropper) satisfied?

Question 2: Is effectiveness given in the sense that the gap 1/k to the optimal
performance limit can be controlled?

e In particular Question 2 requires that the capacity C' must be
algorithmically computable

" This defines a necessary condition
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