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Contribution

» A new regularized covariance matrix estimator is
proposed.

Properties:
» promotes grouping of eigenvalues (fusing eigenvalues),
» has significantly smaller bias, compared to state-of-the-art
methods,
> less sensitive to the choice of regularization parameter.
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Outline

» Preliminaries:

» Sample Covariance Matrix (SCM),
» Regularized Sample Covariance Matrix (RSCM).
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Preliminaries
The Sample Covariance Matrix (SCM)

Given a sample x4, ..., X, of i.i.d. p-variate observations, the
Sample Covariance Matrix (SCM) is defined to be

1 & _ _
Sn= Z(x,- —X)(x; —X)",
i=1
where x denotes the sample mean.

» Well-known problem: When n % p, the SCM, tends to

> overestimate the larger eigenvalues, of the true CM,

» underestimate the smaller eigenvalues of the true CM.
» Possible solution: Regularized or penalized CM estimators

have been introduced in a series of papers.
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Preliminaries
Regularized Sample Covariance Matrix (RSCM)

» The SCM uniquely minimizes,
I(Z;S,) = Tr(X7'Sy) + log{det(X)} (1)

over X € {p x p positive definite symmetric matrices}.
» Regularized Sample Covariance Matrix (RSCM) is then

defined as
x = min{/(%; Sy) + nM(E)}, 2

where

> T(X) denotes a non-negative penalty function,
» n > 0 being the regularization parameter.

Note: The properties of RSCMs depend on the choice of the penalty function.
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Preliminaries

Two paradigms in regularizing the SCM:

» Optimally weighted average of the SCM and a
well-structured target estimator,

> e.g.,[Ledoit and Wolf, 2003, Ledoit and Wolf, 2004,
Bien and Tibshirani, 2011, Ollila and Raninen, 2018].

» Shrinking the SCM eigenvalues towards each other, and
not towards a predefined target estimator,

> e.g., eLasso [Tyler and Yi, 2018], our proposed eFusion.
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Preliminaries

An example of RSCM estimator

» elasso [Tyler and Yi, 2018], shrinks the eigenvalues
towards each other using a penalty function

o
Y)= Z ajlog(\)
j=1

> ) the jth eigenvalue of X,
> a;: weights obtained from decreasing quantiles of the
MarcCenko-Pastur distribution.
» Depending on the choice the regularization parameter,
elLasso may result in partitioning the eigenvalues into
sub-groups.
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Preliminaries

Despite numerical stability, in most RSCM estimators,

X penalized eigenvalues significantly deviate from the true
values,

X optimum n may not be analytically derived without making
prior assumptions on the distribution of the data or model
parameters.

The proposed eFusion estimator,

V" has significantly smaller bias than the state-of-the-art
methods,

v poor choices of n appear to be less detrimental, when *
possesses groups of identical eigenvalues.
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eFusion

Definition

) = mzin{/():; Sn) +nMN(X)},

p
_ di
= Z Pc (E) )

j=1
» pc(-) : R — R denotes Tukey’ s biweight function:

1. r2\°
pc(r):é-mln 1,1—<1—02> , reR,
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eFusion

Definition

3= mzin{/(z; Sn) +nM(X)},

) =Y no(2), 3)
j=1

» ;= log();) — log()\j11): the gaps between successive
log-eigenvalues of X, i.e., \y > --- > \p > 0.

> s: the sample standard deviation of the gaps between
successive log-eigenvalues of S, denoted by

% = log(d}) — log(dh11).
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eFusion

Orthogonally invariant

The eFusion penalty function is orthogonally invariant

p-1
n@Ea") =N(E) = > se( 1),
j=1

for any Q in the set of orthogonal matrices of order p.

[Tyler and Yi, 2018, Lemma 2.2]:

If M(X) is orthogonally invariant, then the RSCM and SCM
possess the same set of eigenvectors, with the associated
eigenvalues following the same ordering.
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eFusion

Orthogonally invariant

£~ i {5 187) + ogfoet(E)) + 1 3 0e( 1)

j=1
reduces to
p-1 _
= m)in {dT)F1 + log(A\) "1 + ?72/%:(%) },
j=1

where
> d=(di,...,dp)T,
> A = (1/M, .., 1/ ) T, with Ay > > 2y >0

» 1is a vector of size p x 1 with all elements equal to one.
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eFusion

Estimating equations

L(X;d,n)

= m}in { d'Ax "+ Iog()\)T1 + nipc(z) }, (4)
=

ﬂ»:mg@+gﬁx—d=m (5)

where
> V= (Vi,...,Vp)"

> v = p(/s) — p(a/s) for j € {1.....p},
> vy = pe(r/s) and vp = —pl(rp—1/5).
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eFusion

Fixed-point estimating equations

By rearranging the terms in (5), we obtain the following system
of fixed-point equations.

%(Clj/)\j — 1) + wjlog A\j11 + Wj_q log A\j_1

log(\j) = T

)

where w; = p(ri/s)/(rj/s) are referred to as weights, for
f=1,...,p.
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eFusion

Finding an optimal tuning parameter for Tukey’s biweight function

» We formulate the following binary hypothesis to detect if
two successive eigenvalues are equal:

7‘[0:/\j:)\j+1,
H1:)\/‘>)\j+1, j:1,.‘.,p—1.

> |n order to test such a hypothesis:

» The distribution of r[O] log(d}) — log(dj+1) is derived under
the null hypothesis 7—[0

» The tuning parameter c is obtained as a threshold that
assures a given probability of false alarm (Pg,).
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eFusion

On the choice of tuning parameter ¢

0.5 1 15

[0]
i

Iy
Figure: Empirical distribution of r1[0] (left panel) and riol(right panel) compared to the
corresponding theoretical distribution for ¥ = 1.
> The distribution of rl.[O] has higher variation for larger j (smaller eigenvalues).

> The choice of ¢ is more flexible for small p/n, e.g.,
for p =100, n= 700, c € [1.13,1.50]
for p = 100, n = 3000, ¢ € [0.42,2.96].
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Algorithm 1: Iteratively reweighted eFusion algorithm

Input :d: Eigenvalues of the SCM S;;
n: Penalty parameter; c: Tukey tuning constant.
Output : A: eFusion eigenvalues verifying (13)
Initialize: k + 0; Al « d
1 Compute s = SD(r%),
Repeat

2 | Update the gaps: r// < log(A\[!) — log(A\[),

3 | Update the weights: wj[k] — p’c(rj[k]/s)/(rj[k]/s),
4 Update the eigenvalue estimates forj =1,...,p:

k+1 2 K K K K k+1
Iog/\l[- o m(%(d///\/[ 1)+ WI[ ] Iog)\][J1 + Wj[_]1 Iog)\][j1 ]).
) j—1

5 K+ Kk+1

until convergence
6 A (exp(log /\EKH]), ..., exp(log )\E,k+1]))T
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Numerical example

We compare the performance of the proposed eFusion with
elLasso.
Problem setting:

» Random sample of size n = 3000 froma p = 100
dimensional multivariate normal distribution,
» The covariance matrix X has
> 40 eigenvalues equal to 20,

> 30 equal to 10,
> 30 equal to 2.
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eFusion VS elLasso

elLasso

Eigenvalue: A
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Figure: Grouping of eigenvalues using eLasso and eFusion.
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Conclusion

> We introduced a new regularized covariance matrix estimator based on
the novel eFusion penalty function that promotes grouping of
eigenvalues.

» The topic of choosing the tuning parameter ¢ was addressed along with
simulation studies.

> An efficient iteratively reweighted algorithm was proposed for computing
the estimator.

» The main benefits of the eFusion:

» Unbiasedness (accurate grouping),
> Robustness to the choice of the penalty parameters.

Aalto University O
School of Electrical o
B Engineering CentraleSupélec
10/20



References

) W & =

Bien, J. and Tibshirani, R. J. (2011).

Sparse estimation of a covariance matrix.

Biometrika, 98(4):807-820.

Ledoit, O. and Wolf, M. (2003).

Improved estimation of the covariance matrix of stock returns with an application to portfolio selection.
Journal of Empirical Finance, 10(5):603—-621.

Ledoit, O. and Wolf, M. (2004).

A well-conditioned estimator for large-dimensional covariance matrices.

J. Multivar. Anal., 88(2):365-411.

Ollila, E. and Raninen, E. (2018).

Optimal shrinkage covariance matrix estimation under random sampling from elliptical distributions.
arXiv preprint arXiv:1808.10188.

Tyler, D. E. and Yi, M. (2018).

Lassoing Eigenvalues.
arXiv:1805.08300v1.

A"

Aalto University O
School of Electrical L)

Engineering

CentraleSupélec

20/20



	Contribution
	Outline
	Outline
	Outline

