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Contribution

I A new regularized covariance matrix estimator is
proposed.

Properties:
I promotes grouping of eigenvalues (fusing eigenvalues),
I has significantly smaller bias, compared to state-of-the-art

methods,
I less sensitive to the choice of regularization parameter.
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Outline

I Preliminaries:
I Sample Covariance Matrix (SCM),
I Regularized Sample Covariance Matrix (RSCM).

I Fusing eigenvalues of the SCM (eFusion):
I Properties of the eFusion penalty function,
I Estimating equations,
I Choosing the tuning parameters,
I Iteratively reweighted algorithm for eFusion.

I Numerical example.
I Conclusion.
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Preliminaries
The Sample Covariance Matrix (SCM)

Given a sample x1, . . . ,xn of i.i.d. p-variate observations, the
Sample Covariance Matrix (SCM) is defined to be

Sn =
1
n

n∑
i=1

(xi − x̄)(xi − x̄)>,

where x̄ denotes the sample mean.
I Well-known problem: When n 6� p, the SCM, tends to

I overestimate the larger eigenvalues, of the true CM,
I underestimate the smaller eigenvalues of the true CM.

I Possible solution: Regularized or penalized CM estimators
have been introduced in a series of papers.
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Preliminaries
Regularized Sample Covariance Matrix (RSCM)

I The SCM uniquely minimizes,

l(Σ; Sn) = Tr(Σ−1Sn) + log{det(Σ)} (1)

over Σ ∈ {p × p positive definite symmetric matrices}.
I Regularized Sample Covariance Matrix (RSCM) is then

defined as
Σ̂ = min

Σ
{l(Σ; Sn) + ηΠ(Σ)}, (2)

where
I Π(Σ) denotes a non-negative penalty function,
I η ≥ 0 being the regularization parameter.

Note: The properties of RSCMs depend on the choice of the penalty function.
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Preliminaries
Two paradigms in regularizing the SCM:

I Optimally weighted average of the SCM and a
well-structured target estimator,
I e.g.,[Ledoit and Wolf, 2003, Ledoit and Wolf, 2004,

Bien and Tibshirani, 2011, Ollila and Raninen, 2018].

I Shrinking the SCM eigenvalues towards each other, and
not towards a predefined target estimator,
I e.g., eLasso [Tyler and Yi, 2018], our proposed eFusion.
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Preliminaries
An example of RSCM estimator

I eLasso [Tyler and Yi, 2018], shrinks the eigenvalues
towards each other using a penalty function

Π(Σ) =

p∑
j=1

aj log(λj),

I λj : the j th eigenvalue of Σ,
I aj : weights obtained from decreasing quantiles of the

Marc̆enko-Pastur distribution.
I Depending on the choice the regularization parameter,

eLasso may result in partitioning the eigenvalues into
sub-groups.
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Preliminaries

Despite numerical stability, in most RSCM estimators,
7 penalized eigenvalues significantly deviate from the true

values,
7 optimum η may not be analytically derived without making

prior assumptions on the distribution of the data or model
parameters.

The proposed eFusion estimator,
X has significantly smaller bias than the state-of-the-art

methods,
X poor choices of η appear to be less detrimental, when Σ

possesses groups of identical eigenvalues.
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eFusion
Definition

Σ̂ = min
Σ
{l(Σ; Sn) + ηΠ(Σ)},

Π(Σ) =

p−1∑
j=1

ρc

( rj

s

)
, (3)

I ρc(·) : R→ R denotes Tukey’ s biweight function:

ρc(r) =
1
6
·min

{
1,1−

(
1− r2

c2

)3}
, r ∈ R,
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eFusion
Definition

Σ̂ = min
Σ
{l(Σ; Sn) + ηΠ(Σ)},

Π(Σ) =

p−1∑
j=1

ρc

( rj

s

)
, (3)

I rj = log(λj)− log(λj+1): the gaps between successive
log-eigenvalues of Σ, i.e., λ1 ≥ · · · ≥ λp > 0.

I s: the sample standard deviation of the gaps between
successive log-eigenvalues of Sn, denoted by
r [0]j = log(dj)− log(dj+1).
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eFusion
Orthogonally invariant

The eFusion penalty function is orthogonally invariant

Π(QΣQ>) = Π(Σ) =

p−1∑
j=1

ρc

( rj

s

)
,

for any Q in the set of orthogonal matrices of order p.

[Tyler and Yi, 2018, Lemma 2.2]:
If Π(Σ) is orthogonally invariant, then the RSCM and SCM
possess the same set of eigenvectors, with the associated
eigenvalues following the same ordering.
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eFusion
Orthogonally invariant

Σ̂ = min
Σ

{
Tr(Σ−1Sn) + log{det(Σ)}+ η

p−1∑
j=1

ρc

( rj

s

)}
,

reduces to

λ̂ = min
λ

{
d>λ−1 + log(λ)>1 + η

p−1∑
j=1

ρc

( rj

s

)}
,

where
I d = (d1, . . . ,dp)>,
I λ−1 = (1/λ1, . . . ,1/λp)>, with λ1 ≥ · · · ≥ λp > 0
I 1 is a vector of size p × 1 with all elements equal to one.
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eFusion
Estimating equations

λ̂ = min
λ

{ L(λ;d ,η)︷ ︸︸ ︷
d>λ−1 + log(λ)>1 + η

p−1∑
j=1

ρc

( rj

s

)}
, (4)

f(λ) = diag
(

1 +
η

s
v
)
λ− d = 0, (5)

where
I v = (v1, . . . , vp)>

I vj = ρ′c(rj/s)− ρ′c(rj−1/s) for j ∈ {1, . . . ,p},
I v1 = ρ′c(r1/s) and vp = −ρ′c(rp−1/s).
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eFusion
Fixed-point estimating equations

By rearranging the terms in (5), we obtain the following system
of fixed-point equations.

log(λj) =

s2

η (dj/λj − 1) + wj log λj+1 + wj−1 log λj−1

wj + wj−1
,

where wj = ρ′c(rj/s)/(rj/s) are referred to as weights, for
j = 1, . . . ,p.
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eFusion
Finding an optimal tuning parameter for Tukey’s biweight function

I We formulate the following binary hypothesis to detect if
two successive eigenvalues are equal:{

H0 : λj = λj+1,

H1 : λj > λj+1, j = 1, . . . ,p − 1.

I In order to test such a hypothesis:
I The distribution of r [0]j = log(dj )− log(dj+1) is derived under

the null hypothesis H0.
I The tuning parameter c is obtained as a threshold that

assures a given probability of false alarm (Pfa).
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eFusion
On the choice of tuning parameter c
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Figure: Empirical distribution of r [0]1 (left panel) and r [0]4 (right panel) compared to the
corresponding theoretical distribution for Σ = I.

I The distribution of r [0]j has higher variation for larger j (smaller eigenvalues).

I The choice of c is more flexible for small p/n, e.g.,
for p = 100, n = 700, c ∈ [1.13, 1.50]
for p = 100, n = 3000, c ∈ [0.42, 2.96].
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Algorithm 1: Iteratively reweighted eFusion algorithm

Input : d: Eigenvalues of the SCM Sn;
η: Penalty parameter; c: Tukey tuning constant.

Output : λ̂: eFusion eigenvalues verifying (13)

Initialize: k ← 0; λ[0] ← d
1 Compute s = SD(r[0]),

Repeat

2 Update the gaps: r [k ]j ← log(λ
[k ]
j )− log(λ

[k ]
j+1),

3 Update the weights: w [k ]
j ← ρ′c(r

[k ]
j /s)/(r [k ]j /s),

4 Update the eigenvalue estimates for j = 1, . . . , p :

log λ
[k+1]
j ← 1

w [k ]
j +w [k ]

j−1

(
s2

η
(dj/λ

[k ]
j − 1) + w [k ]

j log λ
[k ]
j+1 + w [k ]

j−1 log λ
[k+1]
j−1

)
.

5 k ← k + 1

until convergence
6 λ̂←

(
exp(log λ

[k+1]
1 ), . . . , exp(log λ

[k+1]
p )

)>
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Numerical example

We compare the performance of the proposed eFusion with
eLasso.
Problem setting:
I Random sample of size n = 3000 from a p = 100

dimensional multivariate normal distribution,
I The covariance matrix Σ has

I 40 eigenvalues equal to 20,
I 30 equal to 10,
I 30 equal to 2.
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eFusion VS eLasso

eLasso
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Figure: Grouping of eigenvalues using eLasso and eFusion.
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Conclusion

I We introduced a new regularized covariance matrix estimator based on
the novel eFusion penalty function that promotes grouping of
eigenvalues.

I The topic of choosing the tuning parameter c was addressed along with
simulation studies.

I An efficient iteratively reweighted algorithm was proposed for computing
the estimator.

I The main benefits of the eFusion:

I Unbiasedness (accurate grouping),
I Robustness to the choice of the penalty parameters.
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