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The Interpolation Problem
 Low-Resolution

 (LR) image

 High-Resolution
 (HR) image
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? Measured Pixels: from LR image

Missing Pixels: to be estimated



Challenge 

LR image Upsampled-by-2 
LR image HR Image
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Semi-Local Similarity

A Patch (the red block of pixels) 
and its Neighboring Similar Patches 
(the green blocks of pixels) in
Lena.
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Semi-Local Similarity
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A Patch (the red block of pixels) 
and its Neighboring Similar Patches 
(the green blocks of pixels) in
Lena.





Semi-Local Similarity
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Similar patches 
searched in    's spatial 

neighborhood

 An individual 
patch in a 

natural image A Patch (the red block of pixels) 
and its Neighboring Similar Patches 
(the green blocks of pixels) in
Lena.



Buades et al. CVPR 2005
Dong et al. TIP 2013



Exploit Semi-Local Similarity
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Exploit Semi-Local Similarity
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Exploit Semi-Local Similarity
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Sun et al. DSP 2015



Exploit Semi-Local Similarity

   (a) initial estimate   (b) after first iteration       (c) ground-truth 
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Scheme of Each Iteration
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  Decompose an image into overlapping patches
  Update each patch:
    Identify the positions of similar patches
    Compute the weights of similar patches

  Average the contribution of overlapping   
      patches to each missing pixel



Unique Features
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 Robust initialization of the positions of similar patches

 Regularization of the weights of similar patches



Robust Position Initialization
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HR Image and a 
window of interest

Bicubic Initial Estimate HR image



Robust Position Initialization
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HR Image and a 
window of interest

Bicubic Initial Estimate
target patch

HR image
target patch



Robust Position Initialization
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HR Image and a 
window of interest

Bicubic Initial Estimate
target patch and 
similar patches

HR image
target patch and 
similar patches



Robust Position Initialization
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HR Image and a 
window of interest

Guide Image HR image



Robust Position Initialization
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HR Image and a 
window of interest

Guide Image
target patch and 
similar patches

HR image
target patch and 
similar patches



Robust Position Initialization
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HR Image and a 
window of interest

Input Image in Last Iter
target patch and 
similar patches

HR image
target patch and 
similar patches



Regularized Weights 
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Data Fidelity Term Penalty Term



Testset
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USC-SIPI Database
Berkeley Segmentation Database



Quantitative Comparison
Table 1: Comparison of Average PSNR (in decibels) of interpolated images.

Method X2 X3

NEDI [Li & Orchard, 2001] 30.25 /
SAI [Zhang & Wu, 2008] 30.80 /
SME [Mallat & Yu, 2010] 30.74 /

RLLR [Liu et al., 2011] 30.80 /
NARM [Dong et al., 2013] 31.20 27.29

ANSM [Romano et al., 2014] 31.32  27.54
NLPC [Sun et al., 2015] 31.31  27.64

NGSDG [Zhu et al., 2016] 30.76 /
Proposed 31.64 27.86

*
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Visual Comparison (X2)
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Visual Comparison (X2)

Original NEDI SME SAI RLLR

NGSDG NARM ANSM NLPC Proposed

Bicubic
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Runtime Comparison (X2)

Method Programming Details Runtime/second
NARM [Dong et al., 2013] Matlab, Non-Parallel 43.4      138.9

ANSM [Romano et al., 2014] Matlab, C/C++ MEX 1265.0

Proposed
Matlab, Non-Parallel 155.6

Matlab, Parallel 13.3
C++, Parallel 3.6

Table 2: Comparison of runtimes (in seconds) of interpolating a 128X128 
LR image to a 256X256 HR image. Platform: Intel 2.6G Hz 18-Core Intel i9 
processor, Matlab  R2018b, C++ (GCC 7.3.0), Eigen 3, OpenMP.
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Conclusion

Novel Way to Improve Exploitation of Semi-Local Similarity

State-of-the-art PSNR

Simple, Parallerizable Algorithm 
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