

Speech Information Processing (SIP) lab, Department of Electrical Engineering, IIT Hyderabad, India.

Objectives

- Verify whether the given speech utterance is collected from a live human or playback device
- Playback device characteristics can be exploited to detect spoof attacks

Instantaneous Frequency Feature Extraction

 The analytic signal of a continuous time signal s(t) is

$$s_a(t) = s(t) + js_h(t)$$

where $s_h(t) = \frac{1}{\pi t} * s(t)$.
 $s_a(t) = |s_a(t)| exp(j\phi(t))$

- Instantaneous frequency (IF) is the time-derivative of the unwrapped instantaneous phase of $s_a(t)$.
- IF can be computed from the Fourier transform relations as

$$\phi'(t) = \frac{d\phi(t)}{dt} = Im\left\{\frac{s'_a(t)}{s_a(t)}\right\}$$

Figure 1: Instantaneous Frequency Cosine Coefficients (IFCC) features extraction

Importance of Analytic Phase of the Speech Signal for Detecting Replay Attacks in Automatic Speaker Verification Systems

Shaik Mohammad Rafi B, K. Sri Rama Murty ee17resch01003@iith.ac.in, ksrm@iith.ac.in

Device characteristics extraction

- Playback device introduces convolutional distortion to replayed speech
- It is manifested as additive distortion in the phase domain $\mathbf{r} = \mathbf{s} + \mathbf{h}$

r, **s** and **h** denote the phase features of replayed speech, live speech and playback device, respectively.

- An overcomplete dictionary A is trained on live speech s so that it approximates live better than replayed speech.
- K-SVD dictionary learning algorithm involves two steps
- Sparse Coding: For the given features y
- Initialize the dictionary A randomly

• Find the best k-sparse vector x such that

 $\min \|\mathbf{x}\|_0$, subject to $\mathbf{y} = \mathbf{A}\mathbf{x}$.

using the orthogonal matching pursuit (OMP) algorithm.

Update the atoms of A by optimizing

 $\min_{A_{x}} \|y - Ax\|_{F}^{2}, \text{s.t} \|x\|_{0} \le k.$

The residual error vector in this approximation is $\mathbf{e} = \mathbf{y} - \mathbf{A}\mathbf{x}$

 The dictionary approximates of live speech better than the replayed speech, hence the residual error can be used as a feature for spoof detection.

Experimental Evaluations

- The residual live and replayed features are modelled with GMMs.
- The experiments are evaluated on ASVspoof2017 challenge dataset.
- Baseline system: Constant-Q Cepstral
- Coefficients(CQCCs) of Live and replayed speech are modelled with GMMs.

Feature	Raw Features	Residual Features
CQCC	24.65*	22.45
MFCC	30.48	21.4
MGDC	30.00	34.5
IFCC	23.44	15.00
MFCC + IFCC	_	13.99

- The dictionary learns the contribution of live speech which helps in discriminating from replayed speech.
- IFCC features perform better than magnitude based features (MFCCs & CQCCs) and also other phase based features (MGDCs).
- [2] Michal Aharon, Michael Elad, Alfred Bruckstein, et al. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on signal processing, 54(11):4311, 2006.
- [3] Tomi Kinnunen, Md Sahidullah, Héctor Delgado, Massimiliano Todisco, Nicholas Evans, Junichi Yamagishi, and Kong Aik Lee. The asyspoof 2017 challenge: Assessing the limits of replay spoofing attack detection. Proc. Interspeech 2017, pages 2–6, 2017.

Conclusions

 IFCCs capture acoustic variations in live and replayed speech.

References

[1] Karthika Vijayan, Vinay Kumar, and K Sri Rama Murty. Feature extraction from analytic phase of speech signals for speaker verification.

In *INTERSPEECH*, pages 1658–1662, 2014.