# BEAMFORMER DESIGN UNDER TIME-CORRELATED INTERFERENCE AND ONLINE IMPLEMENTATION

Takehiro Kono<sup>1</sup>, Masahiro Yukawa<sup>1,2</sup>, Tomasz Piotrowski<sup>3,4</sup>

 Dept. Electronics and Electrical Engineering, Keio University, Japan
 Center for Advanced Intelligence Project, RIKEN, Japan
 Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5/7, 87-100 Torun, Poland
 Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University,Wilenska 4, 87-100 Torun, Poland

International Conference on Acoustics, Speech, and Signal Processing, Brighton: United Kingdom May 17, 2019

| Introduction |  |  |
|--------------|--|--|
| 00000        |  |  |
|              |  |  |

## Outline



2 The Proposed Beamformer Design

3 Numerical Examples

#### 4 Conclusion

## Background 1: EEG Inverse Problem

#### EEG inverse problem

Aim: Localize and reconstruct the brain activities with non-invasive measurements of induced electric potential outside of the skull.

Difficulty: The activities of the sources are mutually correlated.

<sup>1.</sup> Keio University, Japan 2. Advanced Intelligence Project, RIKEN, Japan 3. Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University EEG inverse problem

# Background 2: Beamforming

The linearly constrained minimum variance (LCMV) beamformer is dominantly used.

 Minimum variance distortionless response (MVDR) beamformer [Van Veen 1997]
 Achieving the highest SINR among all linear beamformers when the

brain activities are mutually uncorrelated.

 $\implies$  non-optimal in the presence of the interfering signals correlated with the desired one.

 Nulling beamformer [S. S. Dalal 2006, H. B. Hui 2006] Cancelling the interfering activities, but amplificating the additive noise.

|          | correlated signals | noise |
|----------|--------------------|-------|
| MVDR     | ×                  | 0     |
| Nulling  | 0                  | ×     |
| Proposed | 0                  | 0     |

| Introduction | Optimization problem | Experiments |  |
|--------------|----------------------|-------------|--|
| 000●0        | 00000                | 0000000     |  |
|              |                      |             |  |

## Contributions

- ▶ Decompose the mean squared error (MSE) for the correlated case.
- Propose relaxed zero forcing (RZF) beamformer for solving EEG inverse problem in the presence of time correlated sources' activities.
  - $\Longrightarrow$  Introduce a quadratic constraint that suppresses the effect of the correlation.
    - $\longrightarrow$  Alleviate the tradeoffs between MVDR and nulling beamformers.
- Present an efficient online implementation of RZF based on dual-domain projections.
- Show the superior performance of the proposed beamformer by numerical experiments.

<sup>1.</sup> Keio University, Japan 2. Advanced Intelligence Project, RIKEN, Japan 3. Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University EEG inverse problem

| Introduction |
|--------------|
| 00000        |

# EEG Forward Model

EEG measurements at time instant k using  $n\ \mbox{EEG}$  sensors modeled as:

EEG forward model

$$\boldsymbol{y}(k) = \sum_{i=1}^{s} \underbrace{\boldsymbol{h}(\boldsymbol{\theta}_{i})q_{i}(k)}_{\text{signal from ith source}} + \underbrace{\boldsymbol{n}(k)}_{\text{noise}} \in \mathbb{R}^{n}$$
(1)

- $q_i \in \mathbb{R}$ : activity of *i*th source
- ▶  $oldsymbol{h}(oldsymbol{ heta}_i) \in \mathbb{R}^n$  : leadfield vector
- ▶  $\theta_i$  : parameter for the position and orientation of the *i*th source

#### Assumptions

- 1. The positions and orientations of sources are known and fixed.  $\Longrightarrow \pmb{h}(\theta_i) {\rm s \ are \ known}.$
- 2.  $q_i(k)$ s are mutually correlated but uncorrelated with the noise.

# EEG Forward Model

EEG measurements at time instant k using  $n\ \mbox{EEG}$  sensors modeled as:

EEG forward model

$$\boldsymbol{y}(k) = \sum_{i=1}^{s} \underbrace{\boldsymbol{h}(\boldsymbol{\theta}_{i})q_{i}(k)}_{\text{signal from ith source}} + \underbrace{\boldsymbol{n}(k)}_{\text{noise}} \in \mathbb{R}^{n}$$
(1)

- $q_i \in \mathbb{R}$  : activity of *i*th source
- ▶  $\boldsymbol{h}(\boldsymbol{\theta}_i) \in \mathbb{R}^n$  : leadfield vector

•  $\boldsymbol{\theta}_i$  : parameter for the position and orientation of the *i*th source

*q*<sub>1</sub>(*k*) is the activity of the desired source.
 ⇒ *q<sub>i</sub>*(*k*) for *i* = 2, 3, · · · , *s* are the interfering activities.
 The fidelity of reconstruction is measured by the mean

The fidelity of reconstruction is measured by the mean squared error (MSE).

| Optimization problem |  |
|----------------------|--|
| 0000                 |  |
|                      |  |

## Outline



- 2 The Proposed Beamformer Design
- 3 Numerical Examples

#### 4 Conclusion

| Optimization problem |  |
|----------------------|--|
| 0000                 |  |
|                      |  |

## MSE and Output Variance

$$J_{\text{MSE}}(\boldsymbol{w}) := E\left[\left(\underbrace{\boldsymbol{w}^{\mathsf{T}}\boldsymbol{y}(k)}_{:=\hat{q}_{1}(k)} - q_{1}(k)\right)^{2}\right]$$

$$= \underbrace{E\left[\left(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{y}(k)\right)^{2}\right]}_{\text{output variance}} + \underbrace{E\left[q_{1}^{2}(k)\right]}_{\text{signal power}} -2E\left[q_{1}^{2}(k)\right]\boldsymbol{w}^{\mathsf{T}}\boldsymbol{h}(\boldsymbol{\theta}_{1})$$

$$-2\underbrace{\sum_{i=2}^{s}E\left[q_{1}(k)q_{i}(k)\right]\boldsymbol{w}^{\mathsf{T}}\boldsymbol{h}(\boldsymbol{\theta}_{i})}_{\text{cross talk}}$$

$$(2)$$

| Optimization problem |  |
|----------------------|--|
| 00000                |  |
|                      |  |

### MSE and Output Variance

$$J_{\text{MSE}}(\boldsymbol{w}) := E\left[\left(\underbrace{\boldsymbol{w}^{\mathsf{T}}\boldsymbol{y}(k)}_{:=\hat{q}_{1}(k)} - q_{1}(k)\right)^{2}\right]$$
  
$$= \underbrace{E\left[\left(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{y}(k)\right)^{2}\right]}_{\text{output variance}} + \underbrace{E\left[q_{1}^{2}(k)\right]}_{\text{signal power}} -2E\left[q_{1}^{2}(k)\right]\boldsymbol{w}^{\mathsf{T}}\boldsymbol{h}(\boldsymbol{\theta}_{1})$$
  
$$-2\underbrace{\sum_{i=2}^{s}E\left[q_{1}(k)q_{i}(k)\right]\boldsymbol{w}^{\mathsf{T}}\boldsymbol{h}(\boldsymbol{\theta}_{i})}_{\text{cross talk}}$$
(2)

*Key idea*: We introduce an additional constraint that suppresses the effect of the cross talk.

Introduction 00000 Optimization problem

Experiments 0000000 Conclusion

# Relaxed Zero Forcing (RZF) Beamformer

cross talk = 
$$-2\sum_{i=2}^{s} \underbrace{E[q_1(k)q_i(k)]}_{\text{unavailable}} \boldsymbol{w}^{\mathsf{T}}\boldsymbol{h}(\boldsymbol{\theta}_i)$$

Optimization problem

minimize 
$$\mathbb{E}[(\boldsymbol{w}^T \boldsymbol{y}(k))^2]$$
 (3)

subject to 
$$\begin{cases} \boldsymbol{w}^T \boldsymbol{h}(\boldsymbol{\theta}_1) = 1\\ \|\boldsymbol{H}_I^T \boldsymbol{w}\|^2 \le \epsilon \quad (\epsilon \ge 0) \end{cases}$$
(4)

$$oldsymbol{H}_I := [oldsymbol{h}(oldsymbol{ heta}_2), \ oldsymbol{h}(oldsymbol{ heta}_3), \ \cdots, \ oldsymbol{h}(oldsymbol{ heta}_s)]$$

Analytical solution:  $\boldsymbol{w}_{\mathrm{RZF}} = \frac{\boldsymbol{R}_{\epsilon}^{-1}\boldsymbol{h}(\boldsymbol{\theta}_{1})}{\boldsymbol{h}(\boldsymbol{\theta}_{1})^{T}\boldsymbol{R}_{\epsilon}^{-1}\boldsymbol{h}(\boldsymbol{\theta}_{1})},$ 

where 
$$\boldsymbol{R}_{\epsilon} := E[\boldsymbol{y}(k)\boldsymbol{y}(k)^T] + \tau_{\epsilon}\boldsymbol{H}_I\boldsymbol{H}_I^T \quad (\tau_{\epsilon} > 0).$$

<sup>1.</sup> Keio University, Japan 2. Advanced Intelligence Project, RIKEN, Japan 3. Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University EEG inverse problem

Introduction 00000 Optimization problem

Experiments 0000000 Conclusion

# Relaxed Zero Forcing (RZF) Beamformer

cross talk = 
$$-2\sum_{i=2}^{s} \underbrace{E[q_1(k)q_i(k)]}_{\text{unavailable}} \boldsymbol{w}^{\mathsf{T}}\boldsymbol{h}(\boldsymbol{\theta}_i)$$

Optimization problem

minimize 
$$\mathbb{E}[(\boldsymbol{w}^T \boldsymbol{y}(k))^2]$$
 (3)

subject to 
$$\begin{cases} \boldsymbol{w}^T \boldsymbol{h}(\boldsymbol{\theta}_1) = 1\\ \|\boldsymbol{H}_I^T \boldsymbol{w}\|^2 \le \epsilon \quad (\epsilon \ge 0) \end{cases}$$
(4)

$$oldsymbol{H}_I := [oldsymbol{h}(oldsymbol{ heta}_2), \ oldsymbol{h}(oldsymbol{ heta}_3), \ \cdots, \ oldsymbol{h}(oldsymbol{ heta}_s)]$$

Analytical solution:  $\boldsymbol{w}_{\mathrm{RZF}} = \frac{\boldsymbol{R}_{\epsilon}^{-1}\boldsymbol{h}(\boldsymbol{\theta}_{1})}{\boldsymbol{h}(\boldsymbol{\theta}_{1})^{T}\boldsymbol{R}_{\epsilon}^{-1}\boldsymbol{h}(\boldsymbol{\theta}_{1})},$ 

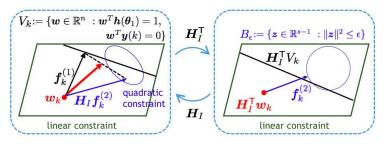
where 
$$\boldsymbol{R}_{\epsilon} := E[\boldsymbol{y}(k)\boldsymbol{y}(k)^T] + \boldsymbol{\tau}_{\epsilon}\boldsymbol{H}_I\boldsymbol{H}_I^T \quad (\boldsymbol{\tau}_{\epsilon} > 0).$$

<sup>1.</sup> Keio University, Japan 2. Advanced Intelligence Project, RIKEN, Japan 3. Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University EEG inverse problem

# Dual-Domain Adaptive Algorithm (1/2)

An algorithm for implementing the RZF beamformer [Yukawa, Sung, Lee, TSP 2013].

#### Algorithm


$$\boldsymbol{w}_{k+1} := \boldsymbol{w}_k + \lambda_k \mu_k \left( \alpha_k \boldsymbol{f}_k^{(1)} + (1 - \alpha_k) \boldsymbol{H}_I \boldsymbol{f}_k^{(2)} \right), \ k \in \mathbb{N},$$
(5)

where  $\lambda_k \in (0,2)$  is the step size,  $\alpha_k \in [0,1]$  and

$$\begin{aligned} \boldsymbol{f}_{k}^{(1)} &:= & \operatorname{argmin}_{\boldsymbol{x} \in V_{k}} \|\boldsymbol{w}_{k} - \boldsymbol{x}\| \\ & \text{for } V_{k} := \{\boldsymbol{w} \in \mathbb{R}^{n} : \boldsymbol{w}^{T}\boldsymbol{h}(\boldsymbol{\theta}_{1}) = 1, \ \boldsymbol{w}^{T}\boldsymbol{y}(k) = 0\}, \\ \boldsymbol{f}_{k}^{(2)} &:= & \operatorname{argmin}_{\boldsymbol{x} \in B_{\epsilon}} \left\|\boldsymbol{H}_{I}^{T}\boldsymbol{w}_{k} - \boldsymbol{x}\right\| \\ & \text{for } B_{\epsilon} := \{\boldsymbol{z} \in \mathbb{R}^{s-1} : \|\boldsymbol{z}\|^{2} \leq \epsilon\}. \end{aligned}$$

| Optimization problem |  |
|----------------------|--|
| 00000                |  |

#### Dual-Domain Adaptive Algorithm (2/2)



A geometric interpretation of DDAA

#### Algorithm

$$\boldsymbol{w}_{k+1} := \boldsymbol{w}_k + \lambda_k \mu_k \left( \alpha_k \boldsymbol{f}_k^{(1)} + (1 - \alpha_k) \boldsymbol{H}_I \boldsymbol{f}_k^{(2)} \right), \ k \in \mathbb{N},$$
(6)

|  | Experiments |  |
|--|-------------|--|
|  | 000000      |  |
|  |             |  |

## Outline



- 2 The Proposed Beamformer Design
- 3 Numerical Examples

#### 4 Conclusion

| 00000 |  |
|-------|--|

# **Experimental Settings**

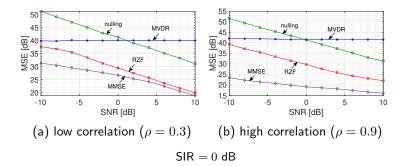
Simulate the case of reconstructing the source activity in interest from the EEG measurements. The settings of the experiments are as follows:

#### Sensor space

The EEG measurements are recorded with a HydroCel Geodesic Sensor Net utilizing 128 channels as the EEG cap layout. FieldTrip (FT) toolbox is used to aid generation of volume conduction model (VCM) and leadfields.

#### Source space

Activities of s = 37 sources are generated.

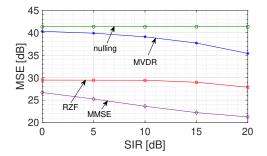

- The desired activity q<sub>1</sub>(k) is generated by an autoreggressive model of order 6 (all the coefficients for each order are set to 0.2).
- ► The interfering activities are generated as  $q_i(k) = \gamma q_1(k) + \eta n_i(k)$ ,  $\gamma > 0$ ,  $\eta > 0$ ,  $i = 2, 3, \dots, s$ , where  $n_i(k)$  follows independently and identically distributed (i.i.d.) standard normal distribution.

<sup>1.</sup> Keio University, Japan 2. Advanced Intelligence Project, RIKEN, Japan 3. Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University EEG inverse problem

|  | Experiments |  |
|--|-------------|--|
|  | 000000      |  |

### MSE under Different SNR Conditions

Comparision based on the analytical solutions.



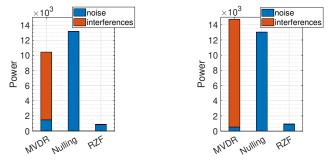

#### RZF achieves better performance than MVDR and nulling.

|       |       | Experiments |  |
|-------|-------|-------------|--|
| 00000 | 00000 | 000000      |  |

#### MSE under Different SIR Conditions

Comparision based on the analytical solutions.




SNR = 0 dB and low correlation ( $\rho = 0.3$ )

RZF achieves better performance.

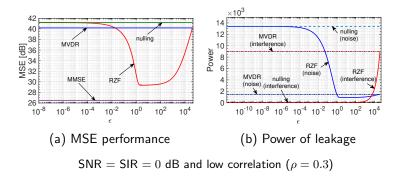
|  | Experiments |  |
|--|-------------|--|
|  | 0000000     |  |

### Power of Noise/Interference Leakage

Comparision based on the analytical solutions.



(a) low correlation ( $\rho = 0.3$ ) (b) high correlation ( $\rho = 0.9$ )


Power of the noise/interference leakage (under SNR = SIR = 0 dB)

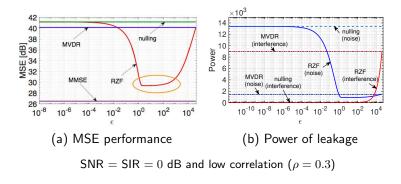
#### The proposed beamformer attains excellent tradeoff.

|  | Experiments |  |
|--|-------------|--|
|  | 0000000     |  |

### Insensitivity to the Choice of $\epsilon$

Comparision based on the analytical solutions.

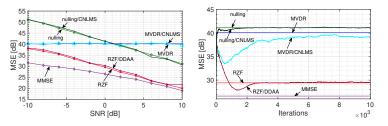



RZF is reasonably insensitive to the choice of  $\epsilon$ .

<sup>1.</sup> Keio University, Japan 2. Advanced Intelligence Project, RIKEN, Japan 3. Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University EEG inverse problem

|  | Experiments |  |
|--|-------------|--|
|  | 0000000     |  |

### Insensitivity to the Choice of $\epsilon$


Comparision based on the analytical solutions.



RZF is reasonably insensitive to the choice of  $\epsilon$ .

| problem Experiments | Conclusion |
|---------------------|------------|
| 000000              |            |

#### **Online Implementation**



(a) steady-state performance (b) learning curves under SNR = 0 dB

SIR = 0 dB and low correlation ( $\rho = 0.3$ )

The RZF is successfully implemented by DDAA.

|  | Conclusion |
|--|------------|
|  | 000        |
|  |            |

## Outline



- 2 The Proposed Beamformer Design
- 3 Numerical Examples



Optimization problem

Experiments 0000000 Conclusion

## Conclusion

#### Summary

- Present the RZF beamformer which minimizes the output variance under the constraints of bounded interference leakage and undistorted target signal.
- Present DDAA for an adaptive implementation of the proposed RZF beamformer.
- Show the RZF significantly outperformed the MVDR and nulling beamformers by numerical experiments.

<sup>1.</sup> Keio University, Japan 2. Advanced Intelligence Project, RIKEN, Japan 3. Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University EEG inverse problem

| Introduction | Optimization problem | Experiments | Conclusion |
|--------------|----------------------|-------------|------------|
| 00000        | 00000                | 0000000     | 00●        |
|              |                      |             |            |

|  | Conclusion |
|--|------------|
|  | 000        |
|  |            |

# Appendix

•  $w_{RZF}$  and  $\epsilon$  of RZF

From the Karush-Kuhn-Tucker conditions, if the values of  $w_{RZF}$  are given, then we can caluculate the corresponded  $\epsilon$  by

 $\|\boldsymbol{H}_I^T \boldsymbol{w}_{RZF}\|^2 = \epsilon.$ 

<sup>1.</sup> Keio University, Japan 2. Advanced Intelligence Project, RIKEN, Japan 3. Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University EEG inverse problem