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Background 1: EEG Inverse Problem

EEG inverse problem

Aim: Localize and reconstruct the brain activities with non-invasive
measurements of induced electric potential outside of the skull.

Difficulty: The activities of the sources are mutually correlated.
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Background 2: Beamforming

The linearly constrained minimum variance (LCMV) beamformer is
dominantly used.

◮ Minimum variance distortionless response (MVDR) beamformer
[Van Veen 1997]
Achieving the highest SINR among all linear beamformers when the
brain activities are mutually uncorrelated.
=⇒ non-optimal in the presence of the interfering signals correlated
with the desired one.

◮ Nulling beamformer [S. S. Dalal 2006, H. B. Hui 2006]
Cancelling the interfering activities, but amplificating the additive
noise.
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Contributions

◮ Decompose the mean squared error (MSE) for the correlated case.

◮ Propose relaxed zero forcing (RZF) beamformer for solving EEG
inverse problem in the presence of time correlated sources’ activities.

=⇒ Introduce a quadratic constraint that suppresses the effect of
the correlation.

−→ Alleviate the tradeoffs between MVDR and nulling
beamformers.

◮ Present an efficient online implementation of RZF based on
dual-domain projections.

◮ Show the superior performance of the proposed beamformer by
numerical experiments.
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EEG Forward Model

EEG measurements at time instant k using n EEG sensors modeled as:

EEG forward model

y(k) =

s∑

i=1

h(θi)qi(k)
︸ ︷︷ ︸

signal from ith source

+n(k)
︸︷︷︸

noise

∈ R
n (1)

◮ qi ∈ R : activity of ith source

◮ h(θi) ∈ R
n : leadfield vector

◮ θi : parameter for the position and orientation of the ith source

Assumptions

1. The positions and orientations of sources are known and fixed.
=⇒ h(θi)s are known.

2. qi(k)s are mutually correlated but uncorrelated with the noise.
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signal from ith source

+n(k)
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noise

∈ R
n (1)

◮ qi ∈ R : activity of ith source

◮ h(θi) ∈ R
n : leadfield vector

◮ θi : parameter for the position and orientation of the ith source

◮ q1(k) is the activity of the desired source.
=⇒ qi(k) for i = 2, 3, · · · , s are the interfering activities.

◮ The fidelity of reconstruction is measured by the mean
squared error (MSE).
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MSE and Output Variance

JMSE(w) := E
[(

wTy(k)
︸ ︷︷ ︸

:= q̂1(k)

−q1(k)
)2]

= E[(wTy(k))2]
︸ ︷︷ ︸

output variance

+ E[q21(k)]
︸ ︷︷ ︸

signal power

−2E[q21(k)]w
Th(θ1)

−2

s∑

i=2

E[q1(k)qi(k)] w
Th(θi)

︸ ︷︷ ︸

cross talk

(2)

◮ Uncorrelated case (E[q1(k)qi(k)] = 0)
−→ MVDR ⇐⇒ minimum MSE (MMSE)

◮ Correlated case (E[q1(k)qi(k)] 6= 0)
−→ MVDR is significantly different from MMSE.
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MSE and Output Variance
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E[q1(k)qi(k)] w
Th(θi)

︸ ︷︷ ︸

cross talk

(2)

Key idea: We introduce an additional constraint that suppresses
the effect of the cross talk.
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Relaxed Zero Forcing (RZF) Beamformer

cross talk = −2

s∑

i=2

E[q1(k)qi(k)]
︸ ︷︷ ︸

unavailable

wTh(θi)

Optimization problem







minimize E
[(
wTy(k)

)2]
(3)

subject to

{

wTh(θ1) = 1

‖HT
I w‖2 ≤ ǫ (ǫ ≥ 0)

(4)

HI := [h(θ2), h(θ3), · · · , h(θs)]

Analytical solution: wRZF =
R−1

ǫ h(θ1)

h(θ1)TR
−1
ǫ h(θ1)

,

where　Rǫ := E[y(k)y(k)T ] + τǫHIH
T
I (τǫ > 0).
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Dual-Domain Adaptive Algorithm (1/2)

An algorithm for implementing the RZF beamformer [Yukawa, Sung, Lee,
TSP 2013].

Algorithm

wk+1 := wk + λkµk

(

αkf
(1)
k + (1− αk)HIf

(2)
k

)

, k ∈ N, (5)

where λk ∈ (0, 2) is the step size, αk ∈ [0, 1] and

f
(1)
k := argmin

x∈Vk
‖wk − x‖

for Vk := {w ∈ R
n : wTh(θ1) = 1, w

T
y(k) = 0},

f
(2)
k := argmin

x∈Bǫ

∥
∥
∥
∥
HT

I wk − x

∥
∥
∥
∥

for Bǫ := {z ∈ R
s−1 : ‖z‖2 ≤ ǫ}.
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Dual-Domain Adaptive Algorithm (2/2)

A geometric interpretation of DDAA

Algorithm

wk+1 := wk + λkµk

(

αkf
(1)
k + (1− αk)HIf

(2)
k

)

, k ∈ N, (6)
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Experimental Settings

Simulate the case of reconstructing the source activity in interest from
the EEG measurements. The settings of the experiments are as follows:

◮ Sensor space
The EEG measurements are recorded with a HydroCel Geodesic
Sensor Net utilizing 128 channels as the EEG cap layout.
FieldTrip (FT) toolbox is used to aid generation of volume
conduction model (VCM) and leadfields.

◮ Source space
Activities of s = 37 sources are generated.
◮ The desired activity q1(k) is generated by an autoreggressive model

of order 6 (all the coefficients for each order are set to 0.2).
◮ The interfering activities are generated as qi(k) = γq1(k) + ηni(k),

γ > 0, η > 0, i = 2, 3, · · · , s, where ni(k) follows independently
and identically distributed (i.i.d.) standard normal distribution.
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MSE under Different SNR Conditions

◮ Comparision based on the analytical solutions.
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SIR = 0 dB

RZF achieves better performance than MVDR and nulling.
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MSE under Different SIR Conditions

◮ Comparision based on the analytical solutions.
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RZF achieves better performance.
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Power of Noise/Interference Leakage

◮ Comparision based on the analytical solutions.
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Power of the noise/interference leakage (under SNR = SIR = 0 dB)

The proposed beamformer attains excellent tradeoff.
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Insensitivity to the Choice of ǫ

◮ Comparision based on the analytical solutions.
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SNR = SIR = 0 dB and low correlation (ρ = 0.3)

RZF is reasonably insensitive to the choice of ǫ.
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Insensitivity to the Choice of ǫ

◮ Comparision based on the analytical solutions.
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Online Implementation
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The RZF is successfully implemented by DDAA.
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Conclusion

Summary

Present the RZF beamformer which minimizes the output variance
under the constraints of bounded interference leakage and
undistorted target signal.

Present DDAA for an adaptive implementation of the proposed RZF
beamformer.

Show the RZF significantly outperformed the MVDR and nulling
beamformers by numerical experiments.
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Appendix

◮ wRZF and ǫ of RZF

From the Karush-Kuhn-Tucker conditions, if the values of wRZF are
given, then we can caluculate the corresponded ǫ by

‖HT
I wRZF ‖

2 = ǫ.
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