Similarity Metric Based on Siamese Neural Networks for Voice Casting

Adrien Gresse, Mathias Quillot, Richard Dufour, Vincent Labatut, Jean-François Bonastre LIA, Avignon University

Context of application

Replacing the original voice by a new voice in a target language is referred as *dubbing*.
Voice casting is performed by a human operator and

Motivations

• Approximate automatically the operator's choice to help him in future decisions.

Learn a multilingual similarity metric beyond the simple acoustic resemblance.
Build a character/role dedicated representational space.

aims to find the most suited voice for the role.

Difficulties:

architectures.

There is no formal description of voices.
 Operator has too many voice-actors to cast.
 The subjectivity of the choice.

Proposed approach

Experimental protocol

We use pairwise relationship between two voices (original, dubbed) that share an abstract notion of similarity.

Figure 1: Voice A is in the source language, voice B in the target language. The score reflects the operator's similarity perception.

We train a binary-classifier using *Siamese Neural Networks* that learn to discriminate between *target* pairs (same character) and *non-target* pairs (different characters).

Corpus

•16 characters from *Mass Effect* video-game.

•180 voice segments per character.

•2 different languages: *English* and *French*.

Sequences extraction (*i*-vector): • 19 MFCCs + energy $+ \Delta + \Delta \Delta$ with CMS and VAD. Table 1: We perform a 4-fold cross-validation (jackknifing) over the 16 characters of *Mass Effect* in order to tackle the dataset limitation. Each case contains 4 distinct characters.

Test	#pairs	Training	#pairs
A	64,800	B+C+D	194,400
B	64,800	A + C + D	194,400
C	64,800	A + B + D	194,400
D	64,800	A + B + C	194,400

Evaluation:

Figure 2: Siamese Neural Networks (SNN) involves two networks sharing same parameters allowing a comparison between independent inputs. Language-independent *i*-vector system.
2048-components UBM and *T*-matrix rank 400.

Performance of the binary classifier (accuracy). *Target/non-target* pairs discrimination (*t*-test).

Results

SNN generalize better on 3 out of 4 test cases while standard architectures seem to memorize couple of speakers.

Figure 3: Target (blue) and non-target (orange) distances on case C for development (left) and test (right) with SNN.

[_		_		-	
		2in-conc		2in-merge		siamese-net	
		acc.	tscore	acc.	tscore	acc.	tscore
A	(test)	0.49	0.71	0.52	17.66	0.55	52.18
B	(test)	0.49	5.34	0.50	4.53	0.59	77.99
C	(test)	0.51	7.82	0.53	18.37	0.62	86.17
D	(test)	0.53	17.30	0.52	14.50	0.50	1.87
A	(dev)	0.94	185.72	0.93	169.93	0.72	47.90
B	(dev)	0.96	211.32	0.94	190.68	0.71	52.77
C	(dev)	0.93	161.16	0.93	160.16	0.70	45.18
D	(dev)	0.96	227.85	0.96	212.80	0.71	44.46

Table 2: We compare accuracy and t-score of SNN with classic

Conclusion

Perspectives

• Results show that we are able to discriminate *target* and *non-target* pairs on unknown voices using siamese networks.

• We built a latent representational space emphasizing the information that reflects an abstract notion of similarity.

Limits:

• The dataset limitation.

We do not discriminate the character himself.We suppose the existence of other bias.

Figure 4: The teacher-student framework allows student model to learn from an intelligent teacher. We train the teacher on additional data (yellow). We use the soft-targets (blue) produced by teacher conjointly with data from *Mass Effect* (red) to train the student model.

Knowledge distillation:

- Teacher model is a character/role classifier trained on additional data with extra labels.
- We raise the temperature in *softmax* activation layer to smooth the class probabilities distribution.
- The knowledge coming from the soft-labels help the student model to discriminate on the *Mass Effect* characters.