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Overview of the paper

• Motivation: Challenges in children speech ASR 

• Investigation: Jointly learning the features and the phone classifier 

• Experimental setup and results 

• Analysis 

• First convolutional layer filters as a spectral dictionary 

• Relevance analysis on the entire network 

• Transferability of adult speech representations to children speech 
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Here we address acoustic modelling.



Joint feature-classifier learning in hybrid HMM based ASR
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FC: fully connected layer, FC-S: FC layer with softmax, Conv: convolutional layer, MP: max pooling. 

D. Palaz, R. Collobert and M. Magimai.-Doss, “Estimating Phoneme Class Conditional Probabilities from Raw Speech Signal 
using Convolutional Neural Networks”, in Proc. Interspeech, 2013. 
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Why this framework? 
• It was shown to learn formant-like information from raw speech with minimal prior assumptions. 
• Hypothesis: this should yield better children speech recognition than the conventional modelling 

of spectral envelop through source-system decomposition.



Data set

• Children speech data: PF-STAR corpus (training: 14.8 hours, testing: 4.7 hours). 

• Two channel recordings of 158 child speakers in British English: we used both the 
channels. 

• Pronunciation: Cambridge BEEP lexicon. 

• 3-gram language model (LM) linearly interpolated from: 

• Training set LM, and 

• MGB-3 challenge data set LM. 

• Adult speech data: WSJCAM0 corpus (training: 15.5 hours).
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Experimental setup
• Tools: HMMs using Kaldi, CNNs using Keras with Tensorflow backend. 

• Training pipeline: monophone, triphone, LDA+MLLT, SAT with fMLLR, SGMM. 

• CNN model architecture: 

• 3/4/5 convolutional layers, 1 fully connected layer. 

• 250ms input, operated by a 30 sample kernel. 

• Conventional (DNN) systems: 

• Standard Mel frequency cepstral coefficient (MFCC) based features. 

• Models: 3 fully connected layers with rectified linear activations. 

• Training was performed using cross-entropy loss, using stochastic gradient descent and dropout and a decaying 
learning rate.
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Analysing the first convolutional layer

• The filters in the first convolution layer learn a spectral dictionary that 
discriminate phones1. 

1D. Palaz, M. Magimai-Doss, and R. Collobert, “End-to-End Acoustic Modeling using Convolutional Neural 
Networks for HMM-based Automatic Speech Recognition,” Speech Communication, 2019. [Online]. Available: 
https://doi.org/10.1016/j.specom.2019.01.004 
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Analysing the first convolutional layer: experimental validation

• Data: American vowel data set. 

• It consists of recordings of 12 vowels for each of its 150 
speakers. 

• It contains annotated formant and F0 values. 

• We analysed on a standard subset of five vowels from four 
speakers (male, female, boy, girl), using 30ms short segments. 

• We observed matching formant values across different vowels 
and speakers (consistent with the findings in Palaz et al.) 

• This suggests that the first layer filters learn meaningful 
representations that discriminate phones.
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Analysing the entire network through relevance signals

• For a given input segment, the activation at a particular output node can be computed through forward pass. 

• The gradient w.r.t. the node’s output can be back-propagated to get a relevance signal. 

• Relevance signal indicates the most informative input samples for the classification. 

• Such methods are widely used in computer vision community.
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Analysing the entire network through relevance signals: example

• Relevance signal can be analysed in terms of its spectral 
content1. 

• We computed relevance signals on 250ms children speech. 

• We analysed their average linear prediction (LP) spectra 
through short-time processing. 

• We observed that the estimated F1 and F2 values from the 
relevance signals are close to their references. 

1H. Muckenhirn, V. Abrol, M. Magimai.-Doss, and S. Marcel, “Gradient-based 
spectral visualization of CNNs using raw waveforms,” Idiap Research Institute, 
Tech. Rep. Idiap-RR-11-2018, Jul 2018. [Online]. Available from:                
http://publications.idiap.ch
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LP relevance spectrum for a speech segment /er/ 
from a boy speaker using children speech CNN. 

Reference: F1 = 614 Hz, F2 = 1867 Hz.
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Summary

• Children speech ASR can be improved through automatic feature learning, instead of 
using the standard cepstral features. 

• This may overcome the challenges in robustly extracting formant-related information from children 
speech. 

• Augmenting children data with adult data could improve the systems further. 

• Both the analysis of 

1. the first convolutional layer through the spectral dictionary interpretation and 

2. entire network analysis on gradient-based relevance signals 

    showed that the CNNs learned information relevant to phone discrimination.
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Thank you… Questions?

pavankumar.dubagunta@idiap.ch 

https://www.linkedin.com/in/pavankumards

For full PDF, visit http://publications.idiap.ch or scan the QR code above.

Visit us at our posters 
• 16:00 today at Poster Area B, Learning voice source related information for depression detection. 
• 08:00 tomorrow at Poster Area A, Segment level training of ANNs based on acoustic confidence measures for 

hybrid HMM/ANN speech recognition.

mailto:pavankumar.dubagunta@idiap.ch
https://www.linkedin.com/in/pavankumards
http://publications.idiap.ch
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Raw speech processing using CNNs

...

Convolutional layers Fully connected layersRaw speech 
signal

Phonemic 
classes

kW1 dW1

kW2

m1

�16

Wseq Convolution



Transferability of adult feature embeddings to children speech

• We used the adult CNN parameters for children speech ASR — only the output layer was trained. 

• This showed that the CNN feature representations learned from adult data are generalisable to 
ASR in children speech. 

• However the context dependent (CD) state clustering may affect the performance.
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Some other existing applications of raw speech modelling
• LVCSR: Zoltán Tüske, Pavel Golik, Ralf Schlüter, and Hermann Ney, “Acoustic modeling with deep neural networks using raw 

time signal for LVCSR,” in Proc. Interspeech, 2014, pp. 890–894. 

• VAD: Rubén Zazo, Tara N. Sainath, Gabor Simko, and Carolina Parada, “Feature learning with raw-waveform CLDNNs for voice 
activity detection,” in Proc. Interspeech, 2016, pp. 3668– 3672. 

• Emotion recognition: G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M. A. Nicolaou, B. W. Schuller, and S. Zafeiriou, “Adieu 
features? End-to-end speech emotion recognition using a deep convolutional recurrent network,” in Proc. ICASSP, 2016, pp. 
5200– 5204.  

• Spoofing detection: H. Dinkel, N. Chen, Y. Qian, and K. Yu, “End-to-end spoofing detection with raw waveform CLDNNs,” in 
Proc. ICASSP, 2017, pp. 4860–4864.  

• Speaker verification: H. Muckenhirn, M. Magimai.-Doss, and S. Marcel, “Towards directly modeling raw speech signal for 
speaker verification using CNNs,” in Proc. ICASSP, 2018, pp. 4884–4888. 

• Gender identification: S. H. Kabil, H. Muckenhirn, and M. Magimai.-Doss, “On learning to identify genders from raw speech 
signal using CNNs,” in Proc. Interspeech, 2018. 

• Classification of paralinguistic information: B. Vlasenko, J. Sebastian, S. P. Dubagunta, and M. Magimai.-Doss, 
“Implementing fusion techniques for the classification of paralinguistic information,” in Proc. Interspeech, 2018.

�18


