Improving Children Speech Recognition through Feature Learning from Raw Speech Signal

S. Pavankumar Dubagunta^{1,2}, Selen Hande Kabil^{1,2} and Mathew Magimai Doss¹ ¹Idiap Research Institute, Martigny, Switzerland ²École polytechnique fédérale de Lausanne (EPFL), Switzerland

Funded under the project FLOSS by HASLERSTIFTUNG

DE LA RECHERCHE SCIENTIFIQUE

Overview of the paper

- Motivation: Challenges in children speech ASR •
- Investigation: Jointly learning the features and the phone classifier •
- Experimental setup and results •
- Analysis •
 - First convolutional layer filters as a spectral dictionary
 - Relevance analysis on the entire network
 - Transferability of adult speech representations to children speech

Automatic speech recognition and challenges with children speech

Automatic speech recognition and challenges with children speech

Automatic speech recognition and challenges with children speech

Here we address acoustic modelling.

Joint feature-classifier learning in hybrid HMM based ASR

FC: fully connected layer, FC-S: FC layer with softmax, Conv: convolutional layer, MP: max pooling.

D. Palaz, R. Collobert and M. Magimai.-Doss, "Estimating Phoneme Class Conditional Probabilities from Raw Speech Signal using Convolutional Neural Networks", in *Proc. Interspeech*, 2013.

Joint feature-classifier learning in hybrid HMM based ASR

Why this framework?

- \bullet
- of spectral envelop through source-system decomposition.

D. Palaz, R. Collobert and M. Magimai.-Doss, "Estimating Phoneme Class Conditional Probabilities from Raw Speech Signal using Convolutional Neural Networks", in *Proc. Interspeech*, 2013.

It was shown to learn formant-like information from raw speech with minimal prior assumptions. Hypothesis: this should yield better children speech recognition than the conventional modelling

Data set

- Children speech data: PF-STAR corpus (training: 14.8 hours, testing: 4.7 hours). •
- Two channel recordings of 158 child speakers in British English: we used both the • channels.
- Pronunciation: Cambridge BEEP lexicon.
- 3-gram language model (LM) linearly interpolated from: •
 - Training set LM, and
 - MGB-3 challenge data set LM. •
- Adult speech data: WSJCAM0 corpus (training: 15.5 hours).

Experimental setup

- Tools: HMMs using Kaldi, CNNs using Keras with Tensorflow backend. •
- Training pipeline: monophone, triphone, LDA+MLLT, SAT with fMLLR, SGMM. •
- CNN model architecture: •
 - 3/4/5 convolutional layers, 1 fully connected layer.
 - 250ms input, operated by a 30 sample kernel. •
- Conventional (DNN) systems: •
 - Standard Mel frequency cepstral coefficient (MFCC) based features. •
 - Models: 3 fully connected layers with rectified linear activations. •
- learning rate.

Training was performed using cross-entropy loss, using stochastic gradient descent and dropout and a decaying

Results: word error rates on near field child test

*Uses 3-pass decoding.

Results: word error rates on near field child test

*Uses 3-pass decoding.

For far field test results, see the paper.

Overview

- Motivation: Challenges in children speech ASR \checkmark •
- Investigation: Jointly learning the features and the phone classifier \checkmark •
- Experimental setup and results
- Analysis •
 - First convolutional layer filters as a spectral dictionary
 - **Relevance analysis on the entire network** •

Analysing the first convolutional layer

 The filters in the first convolution layer learn a spectral dictionary that discriminate phones¹.

¹D. Palaz, M. Magimai-Doss, and R. Collobert, "End-to-End Acoustic Modeling using Convolutional Neural Networks for HMM-based Automatic Speech Recognition," Speech Communication, 2019. [Online]. Available: https://doi.org/10.1016/j.specom.2019.01.004

Analysing the first convolutional layer

 The filters in the first convolution layer learn a spectral dictionary that discriminate phones¹.

¹D. Palaz, M. Magimai-Doss, and R. Collobert, "End-to-End Acoustic Modeling using Convolutional Neural Networks for HMM-based Automatic Speech Recognition," Speech Communication, 2019. [Online]. Available: https://doi.org/10.1016/j.specom.2019.01.004

Different phones trigger different filter combinations. So energies are different for different phones.

Analysing the first convolutional layer

The filters in the first convolution layer learn a spectral dictionary that • discriminate phones¹.

¹D. Palaz, M. Magimai-Doss, and R. Collobert, "End-to-End Acoustic Modeling using Convolutional Neural Networks for HMM-based Automatic Speech Recognition," Speech Communication, 2019. [Online]. Available: https://doi.org/10.1016/j.specom.2019.01.004

We analyse the overall magnitude response to \mathbf{S}_t : $|y_{t}^{(1)}\mathbf{F}^{(1)} + y_{t}^{(2)}\mathbf{F}^{(2)} + \ldots + y_{t}^{(m_{1})}\mathbf{F}^{(m_{1})}|$

Different phones trigger different filter combinations. So energies are different for different phones.

Analysing the first convolutional layer: experimental validation

- Data: American vowel data set. •
 - It consists of recordings of 12 vowels for each of its 150 speakers.
 - It contains annotated formant and Fo values.
- We analysed on a standard subset of five vowels from four • speakers (male, female, boy, girl), using 30ms short segments.
- We observed matching formant values across different vowels ٠ and speakers (consistent with the findings in *Palaz et al.*)
- This suggests that the first layer filters learn meaningful • representations that discriminate phones.

Average filter response for a speech segment /er/ from a boy speaker using children speech CNN. Reference: $F_1 = 614$ Hz, $F_2 = 1867$ Hz.

Analysing the entire network through relevance signals

- For a given input segment, the activation at a particular output node can be computed through forward pass.
- The gradient w.r.t. the node's output can be back-propagated to get a relevance signal.
- Relevance signal indicates the most informative input samples for the classification.
- Such methods are widely used in computer vision community.

Analysing the entire network through relevance signals: example

- Relevance signal can be analysed in terms of its spectral • content¹.
- We computed relevance signals on 250ms children speech. •
- We analysed their average linear prediction (LP) spectra • through short-time processing.
- We observed that the estimated F_1 and F_2 values from the • relevance signals are close to their references.

¹H. Muckenhirn, V. Abrol, M. Magimai.-Doss, and S. Marcel, "Gradient-based spectral visualization of CNNs using raw waveforms," Idiap Research Institute, Tech. Rep. Idiap-RR-11-2018, Jul 2018. [Online]. Available from: http://publications.idiap.ch

LP relevance spectrum for a speech segment /er/ from a boy speaker using children speech CNN. Reference: $F_1 = 614$ Hz, $F_2 = 1867$ Hz.

Summary

- using the standard cepstral features.
- This may overcome the challenges in robustly extracting formant-related information from children • speech.
- Augmenting children data with adult data could improve the systems further. •
- Both the analysis of •
 - 1. the first convolutional layer through the spectral dictionary interpretation and
 - 2. entire network analysis on gradient-based relevance signals

showed that the CNNs learned information relevant to phone discrimination.

Children speech ASR can be improved through automatic feature learning, instead of

Thank you... Questions?

For full PDF, visit <u>http://publications.idiap.ch</u> or scan the QR code above.

Visit us at our posters

- 16:00 today at Poster Area B, Learning voice source related information for depression detection.

hybrid HMM/ANN speech recognition.

08:00 tomorrow at Poster Area A, Segment level training of ANNs based on acoustic confidence measures for

HASLERSTIFTUNG

FONDS NATIONAL SUISSE **DE LA RECHERCHE SCIENTIFIQUE**

Additional Slides

Raw speech processing using CNNs

Fully connected layers

Transferability of adult feature embeddings to children speech

- We used the adult CNN parameters for children speech ASR only the output layer was trained. •
- This showed that the CNN feature representations learned from adult data are generalisable to • ASR in children speech.
- However the context dependent (CD) state clustering may affect the performance.

Some other existing applications of raw speech modelling

- time signal for LVCSR," in *Proc. Interspeech*, 2014, pp. 890–894.
- activity detection," in *Proc. Interspeech*, 2016, pp. 3668–3672.
- 5200-5204.
- *Proc. ICASSP*, 2017, pp. 4860–4864.
- speaker verification using CNNs," in Proc. ICASSP, 2018, pp. 4884–4888.
- signal using CNNs," in *Proc. Interspeech*, 2018.
- · Classification of paralinguistic information: B. Vlasenko, J. Sebastian, S. P. Dubagunta, and M. Magimai.-Doss, "Implementing fusion techniques for the classification of paralinguistic information," in *Proc. Interspeech*, 2018.

• LVCSR: Zoltán Tüske, Pavel Golik, Ralf Schlüter, and Hermann Ney, "Acoustic modeling with deep neural networks using raw

• VAD: Rubén Zazo, Tara N. Sainath, Gabor Simko, and Carolina Parada, "Feature learning with raw-waveform CLDNNs for voice

• Emotion recognition: G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M. A. Nicolaou, B. W. Schuller, and S. Zafeiriou, "Adieu features? End-to-end speech emotion recognition using a deep convolutional recurrent network," in Proc. ICASSP, 2016, pp.

• Spoofing detection: H. Dinkel, N. Chen, Y. Qian, and K. Yu, "End-to-end spoofing detection with raw waveform CLDNNs," in

• Speaker verification: H. Muckenhirn, M. Magimai.-Doss, and S. Marcel, "Towards directly modeling raw speech signal for

• Gender identification: S. H. Kabil, H. Muckenhirn, and M. Magimai.-Doss, "On learning to identify genders from raw speech

