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At a glance

• We focus on the estimation of narrowband mil-
limeter wave channel for massive multiple input
multiple output systems with hybrid analog beamform-
ing architecture.

• We introduce a joint optimization formulation
for mmWave massive MIMO channel estimation incor-
porating both the sparsity and low rank properties [1].

• We develop a machine learning algorithm based on the
Alternating Direction Method of Multipli-
ers (ADMM) for efficient recovery of massive MIMO
channel matrices.

I. The Problem

• Millimeter wave (mmWave) channels are characterized by
high variability that severely challenges their recovery
over short training periods.

• Large antenna sizes require large numbers of training
symbols for satisfactory performance.

• Current channel estimation techniques exploit either the
channel sparsity in the beamspace domain [2] or its
low rank property in the angular domain [3].

II. Background

We consider a NR × NT massive MIMO system operating
over quasi-static mmWave channel with small number of
scatterers Np.

Geometric decomposition

H =
Np∑
k=1

αk︸ ︷︷ ︸
gain

aR(φ(k)
R )aHT (φ(k)

T )︸ ︷︷ ︸
steering vectors
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• The channel is decomposed into a sum of Np rank-1
matrices. Hence, the rank of the channel is at
most Np.

Beamspace representation

H = F︸︷︷︸
DFT
matrix

S︸︷︷︸
sparse
matrix

FH︸ ︷︷ ︸
DFT
matrix

• The amplitude of the beamspace channel ‖S‖ has
at most Np high amplitute entries. However, there
are several entries with lower amplitudes. This phe-
nomenon is called the power leakage effect.

II. Proposed System Design

• To exploit both properties we introduce a joint optimization formula-
tion which extends the standard matrix completion.

• Matrix completion requires a sub-sampled version of the channel ma-
trix HΩ.

• We adopt analog BF with switches for the transmiter (TX) and
the receiver (RX), i.e., f ∈ {0, 1}NT, w ∈ {0, 1}NR are the combining
and precoding vectors.

f ... ...
w

• At t-th training instance, the post-processed received signal at the NR-
element RX is

r[t] ,
√
PtwTHf + n[t]

where Pt is the Transmitter (TX) power and n[t] is the AWGN with
variance σ2

n.
• The mapping of the training symbols to the sub-sampled channel matrix

HΩ is captured by the binary matrix Ω ∈ {0, 1}NR×NT, with ‖Ω‖0 = M .
• To estimate the (i, j)-th non-zero element of HΩ at the t-th training
instance, we set w = ei and f = ej as the RX combining and TX
precoding vectors.

Joint Optimization Problem

min
H,S

τH‖H‖∗︸ ︷︷ ︸
low
rank

+ τS‖S‖1︸ ︷︷ ︸
high

sparsity

s.t.Ω ◦H = HΩ︸ ︷︷ ︸
training
symbols

and H = DRSDH
T︸ ︷︷ ︸

beamspace
representation

III. Proposed Solution via Alternating
Minimization

• To tackle the joint optimization problem, the cost function is decom-
posed as the sum of four unknown variables.

• Then, the solution is obtained via a machine learning technique, the
Alternating Direction Method of Multipliers (ADMM).

• The general procedure for obtaining the solution follows the next steps:

Introduce the two auxiliary matrix variables
Y , H and C , Y −DRSDH

T

Replace the constraints with
‖Ω ◦H−HΩ‖2

F and ‖Y −DRSDH
T ‖2

F

Solve the augmented problem

min
H,Y,S,C

τH‖H‖∗ + τS‖S‖1 + 1
2
‖C‖2

F + 1
2
‖Ω ◦Y −HΩ‖2

F

s.t. H = Y and C = Y −DRSDH
T

• The `-th algorithmic iteration with ` = 0, 1, . . . the following separate
sub-problems need to be solved:

H(`+1)=argmin
H
L1

(
H,Y(`),S(`),C(`),Z(`)

1 ,Z
(`)
2

)
, (1)

Y(`+1)=argmin
Y
L1

(
H(`+1),Y,S(`),C(`),Z(`)

1 ,Z
(`)
2

)
, (2)

S(`+1)=argmin
S
L1

(
H(`+1),Y(`+1),S,C(`),Z(`)

1 ,Z
(`)
2

)
, (3)

C(`+1)=argmin
C
L1

(
H(`+1),Y(`+1),S(`+1),C,Z(`)

1 ,Z
(`)
2

)
, (4)

Z(`+1)
1 =Z(`)

1 + ρ
(
H(`+1) −Y(`+1)), (5)

Z(`+1)
2 =Z(`)

2 + ρ
(
Y(`+1)−DRS(`+1)DH

T−C(`+1)). (6)
where L1 is the augmented Lagrangian, ρ is the stepsize, and for ` = 0:
H(0) = Z(0)

1 = Z(0)
2 = 0.

IV. Evaluation

• Orthogonal matching pursuit (OMP) and vector approxi-
mate message passing (VAMP) exploit only the sparsity of
the channel matrix.

• Singular value thresholding (SVT) capitalizes only on its
low rank property.

• TSSR [3] exploits both properties but in a sequencial man-
ner.

• Normalized Mean-Square-Error (NMSE) was evaluated as
NMSE = E{10 log10 ‖Ĥ−H‖2

F/‖H‖2
F}

• Achievable Spectral Efficiency (ASE) was evaluated as
ASE = E

log2det
INR +(NTNR(σ2

n+NMSE))−1HHH


0 10 20

SNR (dB)

10
-2

10
-1

10
0

N
M

S
E

 (
d

B
)

0 10 20

SNR (dB)

10
-2

10
-1

10
0

N
M

S
E

 (
d

B
)

0 10 20

SNR (dB)

10
-3

10
-2

10
-1

10
0

N
M

S
E

 (
d
B

)

OMP VAMP TSSR Proposed

= 400 symbols TT T= 800 symbols = 1200 symbols

Figure 1: NMSE w.r.t. transmit SNR for a 64× 64 MIMO channel with
Np = 2 and different T values.
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Figure 2: NMSE for a 64× 64 MIMO channel and 30dB transmit SNR
w.r.t. (i) algorithmic iterations and different T ; and (ii)Np for T = 2000.
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Figure 3: ASE w.r.t. transmit SNR for a 32 × 32 MIMO channel with
Np = 2 and different T values.

Conclusions

The proposed technique
• exploits the properties from low-rank and
sparsity domains jointly,

• combats effectivelly power leakage effect,
• exhibits improved performance in terms of
NMSE for channel estimation with short beam
training length.

• Future work will extend the proposed framework for
the wideband channel model.
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