

The 44th International Conference on Acoustics, Speech, and Signal Processing (ICASSP)

Speech Emotion Recognition Using Multi-hop Attention Mechanism

¹Seunghyun Yoon, ¹Seokhyun Byun, ²Subhadeep Dey and ¹Kyomin Jung

SEOUL NATIONAL UNIVERSITY

Index

- Problem to Solve
- Related Works & Limitations

- Proposed Model: Multi-hop Attention
- Implementation Details
- Empirical Results
- Conclusion

Speech Emotion Recognition

Exploiting textual and acoustic data of an utterance for the speech emotion classification task

Related Work: Single modality

- Using Regional Saliency for Speech Emotion Recognition, Aldeneh, et., al., ICASSP-17
- CNN based model
- Achieve up to 60.7% WA in IEMOCAP dataset

Fig. 1. Network Overview (four filters shown).

Related Work: Single modality

- Automatic Speech Emotion Recognition Using Recurrent Neural
 Networks with Local Attention, Mirsamadi et., al., ICASSP-17
- RNN based model with Attention mechanism
- Achieve up to 63.5% WA in IEMOCAP dataset

Related Work: Multi modality

6

- Deep Neural Networks for Emotion Recognition Combining Audio and Transcripts, Cho et., al., Interspeech-18
- Combine acoustic information and conversation transcripts
- Achieve up to 64.9% WA in IEMOCAP dataset

Related Work: Multi modality

- Multimodal Speech Emotion Recognition Using Audio and Text, Yoon et., al., SLT-18
- End-to-end training
- Achieve up to 71.8% WA in IEMOCAP dataset

Fig. 1. Multimodal dual recurrent encoder. The upper part shows the ARE, which encodes audio signals, and the lower part shows the TRE, which encodes textual information.

Bidirectional Recurrent Encoder (BRE)

- **Audio-BRE**
 - **Recurrent Encoder for audio modality** •
- **Features** ۲
 - Bidirectional •
 - **Residual Connection** •

$$\vec{\mathbf{h}}_{t} = f_{\theta}(\vec{\mathbf{h}}_{t-1}, \vec{\mathbf{x}}_{t}) + \vec{\mathbf{x}}_{t},$$
$$\overleftarrow{\mathbf{h}}_{t} = f_{\theta}'(\overleftarrow{\mathbf{h}}_{t+1}, \overleftarrow{\mathbf{x}}_{t}) + \overleftarrow{\mathbf{x}}_{t},$$
$$\mathbf{o}_{t} = [\vec{\mathbf{h}}_{t}; \overleftarrow{\mathbf{h}}_{t}],$$
$$\mathbf{o}_{t}^{A} = [\mathbf{o}_{t}; \mathbf{p}]$$

- x_t : audio feature
- **p** : prosodic feature vector

Bidirectional Recurrent Encoder (BRE)

- Text-BRE
 - Recurrent Encoder for textual modality
- Tokenize textual information
 - I'm happy to hear the story
 - \rightarrow I 'm happy to hear the story

$$\vec{\mathbf{h}}_{t} = f_{\theta}(\vec{\mathbf{h}}_{t-1}, \vec{\mathbf{x}}_{t}) + \vec{\mathbf{x}}_{t},$$
$$\overleftarrow{\mathbf{h}}_{t} = f_{\theta}'(\overleftarrow{\mathbf{h}}_{t+1}, \overleftarrow{\mathbf{x}}_{t}) + \overleftarrow{\mathbf{x}}_{t},$$
$$\mathbf{o}_{t}^{T} = [\vec{\mathbf{h}}_{t}; \overleftarrow{\mathbf{h}}_{t}]$$

 x_t : textual feature

BRE model

Multi-hop Attention (MHA)

- Motivated by human behavior
 - Contextual Understanding from an iterative process

1 Multi-hop Attention (MHA)

• First Hop

- Context : Audio information
- Aggregate : Textual information
- Result : H¹

$$a_{i} = \frac{\exp((\mathbf{o}_{\text{last}}^{A})^{\mathsf{T}} \mathbf{o}_{i}^{T})}{\sum_{i} \exp((\mathbf{o}_{\text{last}}^{A})^{\mathsf{T}} \mathbf{o}_{i}^{T})}, (i = 1, ..., t)$$
$$\mathbf{H}^{1} = \sum_{i} a_{i} \mathbf{o}_{i}^{T}, \ \mathbf{H} = [\mathbf{H}^{1}; \mathbf{o}_{\text{last}}^{A}].$$

② Multi-hop Attention (MHA)

• Second Hop

- Context : Updated textual information
- Aggregate : Audio information
- Result : H²

$$\begin{aligned} a_i &= \frac{\exp(\ (\mathbf{H}_1)^{\mathsf{T}} \mathbf{o}_i^A \)}{\sum_i \exp(\ (\mathbf{H}_1)^{\mathsf{T}} \mathbf{o}_i^A \)}, \ (i = 1, ..., t) \\ \mathbf{H}^2 &= \sum_i a_i \ \mathbf{o}_i^A, \ \mathbf{H} = [\mathbf{H}^1; \mathbf{H}^2], \end{aligned}$$

③ Multi-hop Attention (MHA)

• Third Hop

- Context : Updated audio information
- Aggregate : Textual information
- Result : H³

$$a_{i} = \frac{\exp((\mathbf{H}_{2})^{\mathsf{T}} \mathbf{o}_{i}^{T})}{\sum_{i} \exp((\mathbf{H}_{2})^{\mathsf{T}} \mathbf{o}_{i}^{T})}, \ (i = 1, ..., t$$
$$\mathbf{H}^{3} = \sum_{i} a_{i} \mathbf{o}_{i}^{T}, \ \mathbf{H} = [\mathbf{H}^{3}; \mathbf{H}^{2}],$$

- Objective : classification
- Compute distribution of the predicted probability
- Cross-entropy loss

$$\hat{y}_c = \operatorname{softmax}((\mathbf{H})^{\mathsf{T}} \mathbf{W} + \mathbf{b}),$$

$$\mathcal{L} = -\log \prod_{i=1}^{N} \sum_{c=1}^{C} y_{i,c} \log(\hat{y}_{i,c}),$$

- Interactive Emotional Dyadic Motion Capture (IEMOCAP)
 - Five sessions of utterances between two speakers (one male and one female)
 - Total 10 unique speakers participated
- Environment setting
 - 1,636 happy, 1,084 sad, 1,103 angry and 1,708 neutral
 - **"excitement**" → merge with "**happiness**"
 - **10-fold** cross-validation

Implementation Details

- Audio data
 - MFCC features (using Kaldi)
 - frame size 25 ms at a rate of 10 ms with the Hamming window
 - concatenate it with its first, second order derivates \rightarrow 120-dims
 - Maximum step: 750 (mean + std)
 - Prosodic features (using OpenSMILE)
 - **35**-dims
- Textual data
 - **Ground-truth** transcript form IEMOCAP dataset
 - ASR-processed transcript* (WER 5.53%)

*Google Cloud Speech API

- **Textual** information vs **Acoustic** information
 - text-BRE shows higher performance than that of audio-BRE by 8%

_	Model	Modality	WA	UA	-
_	Ground-tru	th transcript			-
	E_vec-MCNN-LSTM [18]	A+T	0.649	0.659	
_	MDRE [7]	A+T	0.718	-	_
	audio-BRE (ours)	А	0.646	0.652	
	text-BRE (ours)	Т	0.698	0.703	4 8% (0.646 → 0.698)
	MHA-1 (ours)	A+T	0.756	0.765	• • • • •
	MHA-2 (ours)	A+T	0.765	0.776	
	MHA-3 (ours)	A+T	0.740	0.753	
_	ASR-proces	sed transcript			-
	text-BRE-ASR (ours)	Т	0.652	0.658	-
	MHA-2-ASR (ours)	A+T	0.730	0.739	

- Comparison with best baseline model
 - MHA-2 outperformed the MDRE by 6.5%

Model	Modality	WA	UA	
Ground-tru	th transcript			
E_vec-MCNN-LSTM [18]	A+T	0.649	0.659	
MDRE [7]	A+T	0.718	-	
audio-BRE (ours)	А	0.646	0.652	-
text-BRE (ours)	Т	0.698	0.703	
MHA-1 (ours)	A+T	0.756	0.765	
MHA-2 (ours)	A+T	0.765	0.776	6.5% (0.718
MHA-3 (ours)	A+T	0.740	0.753	· J
ASR-proces	sed transcript			
text-BRE-ASR (ours)	Т	0.652	0.658	
MHA-2-ASR (ours)	A+T	0.730	0.739	

→ 0.765)

ASR-processed transcript

• performance degradation in **text-BRE-ASR** by 6.6%

Model	Modality	WA	UA	-
Ground-tru	th transcript			-
E_vec-MCNN-LSTM [18]	A+T	0.649	0.659	
MDRE [7]	A+T	0.718	-	_
audio-BRE (ours)	А	0.646	0.652	-
text-BRE (ours)	Т	0.698	0.703	
MHA-1 (ours)	A+T	0.756	0.765	
MHA-2 (ours)	A+T	0.765	0.776	
MHA-3 (ours)	A+T	0.740	0.753	
ASR-proces	ssed transcript			-
text-BRE-ASR (ours)	Т	0.652	0.658	
MHA-2-ASR (ours)	A+T	0.730	0.739	

ASR-processed transcript

• performance degradation in **MHA-2-ASR** by 4.6%

Model	Modality	WA	UA
Ground-tru	th transcript		
E_vec-MCNN-LSTM [18]	A+T	0.649	0.659
MDRE [7]	A+T	0.718	-
audio-BRE (ours)	А	0.646	0.652
text-BRE (ours)	Т	0.698	0.703
MHA-1 (ours)	A+T	0.756	0.765
MHA-2 (ours)	A+T	0.765	0.776
MHA-3 (ours)	A+T	0.740	0.753
ASR-proces	ssed transcript		
text-BRE-ASR (ours)	Т	0.652	0.658
MHA-2-ASR (ours)	A+T	0.730	0.739

- ASR-processed vs ground-truth
 - MHA-2 still outperformed the MDRE by 1.6%

Model	Modality	WA	UA	
Ground-truth transcript				
E_vec-MCNN-LSTM [18]	A+T	0.649	0.659	
MDRE [7]	A+T	0.718	-	
audio-BRE (ours)	А	0.646	0.652	
text-BRE (ours)	Т	0.698	0.703	
MHA-1 (ours)	A+T	0.756	0.765	
MHA-2 (ours)	A+T	0.765	0.776	
MHA-3 (ours)	A+T	0.740	0.753	
ASR-processed transcript				
text-BRE-ASR (ours)	Т	0.652	0.658	
MHA-2-ASR (ours)	A+T	0.730	0.739	

Error Analysis

- Audio-BRE
 - Most of the emotion labels are frequently misclassified as "neutral"
 - Supporting the claims in [7, 25]

[7] Multimodal speech emotion recognition using audio and text, Yoon et. al., SLT-18

[25] Attentive convolutional neural network based speech emotion recognition: A study on the impact of input features, signal length, and acted speech, Neumann et. al., Interspeech-17

- Text-BRE
 - *"angry"* and "*happy"* are correctly classified by 32% (57.14 to 75.41) and 63% (40.21 to 65.56)

- Text-BRE
 - Incorrectly predicted instances of the "happy "as "sad" in 10%
 - even though these emotional states are opposites of one another

25

- MHA-2
 - Benefits from strengths of **audio-BRE** and **text-BRE**
 - Significant performance gain for all predictions (vs text-BRE)

26

- MHA-2
 - Benefits from strengths of audio-BRE and text-BRE
 - Significant performance gain for all predictions (vs audio-BRE)

We study how to recognize speech emotion

- **PROPOSE** multi-hop attention model to combine acoustic and textual data for speech emotion recognition task
- **SHOW** proposed model outperforms the best baseline system
- TEST with ASR-processed transcripts and show the reliability of the proposed system in the practical scenario where the groundtruth transcripts are not available

Thank you