When can a System of Subnetworks be Registered Uniquely?

Aditya V. Singh Kunal N. Chaudhury
Department of Electrical Engineering
Indian Institute of Science

May 15, 2019

Sensor network localization

System of equations

GIVEN
Nodes: $1, \ldots, \mathrm{~N} \quad\left(\right.$ in $\left.\mathbb{R}^{d}\right)$
Patches: $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{M}}$

$$
\mathbf{x}_{k, i} \text { : local coordinate of node } k \text { if } k \in \mathrm{P}_{i}
$$

UNKNOWNS
\mathbf{z}_{k} : global coordinate of node k
\mathcal{R}_{i} : rigid transform corresponding to P_{i}, i.e. if $k \in \mathrm{P}_{i}$

$$
\mathbf{z}_{k}=\mathcal{R}_{i}\left(\mathbf{x}_{k, i}\right)=\mathbf{O}_{i} \mathbf{x}_{k, i}+\mathbf{t}_{i}
$$

Registration Problem

Find $\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathrm{N}}, \mathcal{R}_{1}, \ldots, \mathcal{R}_{\mathrm{M}}$ such that

$$
\mathbf{z}_{k}=\mathcal{R}_{i}\left(\mathbf{x}_{k, i}\right), \quad k \in \mathrm{P}_{i}, \quad i \in[1: \mathrm{M}] .
$$

System of equations

GIVEN
Nodes: $1, \ldots, \mathrm{~N} \quad\left(\right.$ in $\left.\mathbb{R}^{d}\right)$
Patches: $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{M}}$

$$
\mathbf{x}_{k, i} \text { : local coordinate of node } k \text { if } k \in \mathrm{P}_{i}
$$

UNKNOWNS
z_{k} : global coordinate of node k
\mathcal{R}_{i} : rigid transform corresponding to P_{i}, i.e. if $k \in \mathrm{P}_{i}$

$$
\mathbf{z}_{k}=\mathcal{R}_{i}\left(\mathbf{x}_{k, i}\right)=\mathbf{O}_{i} \mathbf{x}_{k, i}+\mathbf{t}_{i}
$$

Registration Problem

$$
\begin{aligned}
& \mathcal{R}: \mathbb{R}^{d} \\
& \mathbf{x} \longmapsto \mathbb{R}^{d} \\
& \mathbf{O x}+\mathbf{t}
\end{aligned}
$$

Find $\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathrm{N}}, \mathcal{R}_{1}, \ldots, \mathcal{R}_{\mathrm{M}}$ such that $\mathbf{0}$: orthogonal matrix, \mathbf{t} : translation

$$
\mathbf{z}_{k}=\mathcal{R}_{i}\left(\mathbf{x}_{k, i}\right), \quad k \in \mathrm{P}_{i}, \quad i \in[1: \mathrm{M}] .
$$

Registration Problem

Find $\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathrm{N}}, \mathcal{R}_{1}, \ldots, \mathcal{R}_{\mathrm{M}}$ such that

$$
\mathbf{z}_{k}=\mathcal{R}_{i}\left(\mathbf{x}_{k, i}\right), \quad k \in \mathrm{P}_{i}, \quad i \in[1: \mathrm{M}] .
$$

Original network

Given data

Registration Problem

Find $\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathrm{N}}, \mathcal{R}_{1}, \ldots, \mathcal{R}_{\mathrm{M}}$ such that

$$
\mathbf{z}_{k}=\mathcal{R}_{i}\left(\mathbf{x}_{k, i}\right), \quad k \in \mathrm{P}_{i}, \quad i \in[1: \mathrm{M}] .
$$

Original network

observer				
1	observer 2	observer 3	GLOBAL	
node 1	$\mathbf{x}_{1,1}$	$\mathbf{x}_{1,2}$		\mathbf{z}_{1}
node 2	$\mathbf{X}_{2,1}$		$\mathbf{x}_{2,3}$	\mathbf{z}_{2}
node 3	$\mathbf{X}_{3,1}$		$\mathbf{X}_{3,3}$	\mathbf{Z}_{3}
node 4		$\mathbf{x}_{4,2}$	$\mathbf{x}_{4,3}$	\mathbf{z}_{4}
node 5		$\mathbf{X}_{5,2}$	$\mathbf{X}_{5,3}$	\mathbf{z}_{5}

Given data

Registration Problem

Find $\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathrm{N}}, \mathcal{R}_{1}, \ldots, \mathcal{R}_{\mathrm{M}}$ such that

Original network

$$
k \in \mathrm{P}_{i}, \quad i \in[1: \mathrm{M}] .
$$

	observer 1	observer 2	observer 3	GLobal
node 1	$\mathbf{x}_{1,1}$	$\mathbf{x}_{1,2}$		\mathbf{z}_{1}
node 2	$\mathbf{X}_{2,1}$		$\mathbf{X}_{2,3}$	Z_{2}
node 3	$\mathbf{x}_{3,1}$		$\mathbf{x}_{3,3}$	\mathbf{Z}_{3}
node 4		$\mathbf{x}_{4,2}$	$\mathbf{X}_{4,3}$	Z_{4}
node 5		$\mathbf{X}_{5,2}$	$\mathbf{X}_{5,3}$	Z5

Given data

Registration Problem

Find $\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathrm{N}}, \mathcal{R}_{1}, \ldots, \mathcal{R}_{\mathrm{M}}$ such that

$$
\mathbf{z}_{k}=\mathcal{R}_{i}\left(\mathbf{x}_{k, i}\right), \quad k \in \mathrm{P}_{i}, \quad i \in[1: \mathrm{M}] .
$$

- Does a solution exist?

Yes! Ground truth

- Is this solution unique ... up to congruence?

We are interested only in relative positions and transformations

Theorem: Uniqueness of solution

Suppose, for REG in \mathbb{R}^{d}

A1. each patch contains at least $d+1$ nodes

A2. the nodes are in generic positions

Then

Theorem: Uniqueness of solution

Rationale
Rigid transform determined by action on $d+1$ points in generic positions
Suppose, for REG in \mathbb{R}^{d}

A1. each patch contains at least $d+1$ nodes

A2. the nodes are in generic positions

Then
uniqueness of solution to REG \equiv rigidity of the body graph

$2 \bullet$
$\bullet 3$
$1 \cdot$
-4

uniqueness of solution to REG \equiv rigidity of the body graph

	observer 1	observer 2	observer 3	GLOBAL
node 1	$\mathbf{X}_{1,1}$	$\mathbf{X}_{1,2}$		\mathbf{Z}_{1}
node 2	$\mathbf{X}_{2,1}$		$\mathbf{X}_{2,3}$	\mathbf{Z}_{2}
node 3	$\mathbf{X}_{3,1}$		$\mathbf{X}_{3,3}$	\mathbf{Z}_{3}
node 4		$\mathbf{X}_{4,2}$	$\mathbf{X}_{4,3}$	\mathbf{Z}_{4}
node 5		$\mathbf{X}_{5,2}$	$\mathbf{X}_{5,3}$	\mathbf{Z}_{5}

-4

uniqueness of solution to REG \equiv rigidity of the body graph

$\stackrel{9}{5}$

uniqueness of solution to REG \equiv rigidity of the body graph

uniqueness of solution to REG \equiv rigidity of the body graph

	observer 1	observer 2	observer 3	GLOBAL
node 1	$\mathbf{X}_{1,1}$	$\mathbf{X}_{1,2}$		Z_{1}
node 2	$\mathbf{X}_{2,1}$		$\mathbf{X}_{2,3}$	\mathbf{Z}_{2}
node 3	$\mathbf{X}_{3,1}$		$\mathbf{X}_{3,3}$	\mathbf{Z}_{3}
node 4		$\mathrm{X}_{4,2}$	$\mathrm{X}_{4,3}$	Z_{4}
node 5		$\mathbf{X} 5,2$	$\mathbf{X}_{5,3}$	Z_{5}

uniqueness of solution to REG \equiv rigidity of the body graph

To test if this can be uniquely registered

... test if this graph is rigid

Graph (embedding) rigidity: Setup

GIVEN

- undirected graph: $\mathrm{G}=(V, E)$
- embedding of G in \mathbb{R}^{d} : mapping $V \rightarrow \mathbb{R}^{d}$

Graph (embedding) rigidity: Setup

\[

\]

- undirected graph: $\mathrm{G}=(V, E)$
- embedding of G in \mathbb{R}^{d} : mapping $V \rightarrow \mathbb{R}^{d}$

Graph (embedding) rigidity: Setup

- undirected graph: $\mathrm{G}=(V, E)$
- embedding of G in \mathbb{R}^{d} : mapping $V \rightarrow \mathbb{R}^{d}$

Graph (embedding) rigidity: Setup

$$
\begin{gathered}
\text { Graph } \\
\mathrm{G}=(\frac{\{1,2,3\}}{V}, \underbrace{\{(1,2),(1,3),(2,3)\}}_{E})
\end{gathered}
$$

Embedding in \mathbb{R}^{2}

- undirected graph: $\mathrm{G}=(V, E)$
- embedding of G in \mathbb{R}^{d} : mapping $V \rightarrow \mathbb{R}^{d}$

QUESTION: Can we have an embedding which preserves edge lengths, but has a different shape?

Graph (embedding) rigidity: Setup

$$
\mathrm{G}=(\underbrace{\{1,2,3,4\}}_{V}, \underbrace{\{(1,2),(1,3),(2,3),(3,4)\}}_{E})
$$

Question: Can we have an embedding which preserves edge lengths, but has a different shape?

Graph (embedding) rigidity: Setup

$$
\mathrm{G}=(\underbrace{\{1,2,3,4\}}_{V}, \underbrace{\{(1,2),(1,3),(2,3),(3,4)\}}_{E})
$$

QUESTION: Can we have an embedding which preserves edge lengths, but has a different shape?

Graph (embedding) rigidity: Setup

$$
\mathrm{G}=(\underbrace{\{\{1,2,3,4\}}_{V}, \underbrace{\{(1,2),(1,3),(1,4),(2,3),(3,4)\}}_{E})
$$

QUESTION: Can we have an embedding which preserves edge lengths, but has a different shape?

Graph (embedding) rigidity: Setup

$$
\mathrm{G}=(\underbrace{\{1,2,3,4\}}_{V}, \underbrace{\{(1,2),(1,3),(1,4),(2,3),(3,4)\}}_{E})
$$

QUESTION: Can we have an embedding which preserves edge lengths, but has a different shape?

Graph (embedding) rigidity: Graph vs Embedding

$$
\mathrm{G}=(\underbrace{\{1,2,3,4,5\}}_{V}, \underbrace{\{(1,2),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)\}}_{E})
$$

Graph (embedding) rigidity: Graph vs Embedding

$$
\mathrm{G}=(\underbrace{\{1,2,3,4,5\}}_{V}, \underbrace{\{(1,2),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)\}}_{E})
$$

Graph (embedding) rigidity: Graph vs Embedding

$$
\mathrm{G}=(\frac{\{1,2,3,4,5\}}{V}, \underbrace{\{(1,2),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)\})}_{E})
$$

This embedding is not rigid

Graph (embedding) rigidity: Graph vs Embedding

$$
\mathrm{G}=\left(\frac{\{1,2,3,4,5\}}{V}, \frac{\{(1,2),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)\})}{E}\right)
$$

This embedding is not rigid

Graph (embedding) rigidity: Graph vs Embedding

$$
\mathrm{G}=(\frac{\{1,2,3,4,5\}}{V}, \underbrace{\{(1,2),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)\}}_{E})
$$

This embedding is not rigid

This embedding is rigid

Graph (embedding) rigidity: Graph vs Embedding

$$
\mathrm{G}=(\underbrace{\{1,2,3,4,5\}}_{V}, \underbrace{\{(1,2),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)\}}_{E})
$$

But recall our theorem
Suppose, for REG in \mathbb{R}^{d}
A1. each patch contains at least $d+1$ nodes
A2. the nodes are in generic positions
Then
uniqueness of solution to REG \equiv rigidity of the body graph

Graph (embedding) rigidity: Graph vs Embedding

$$
\mathrm{G}=(\underbrace{\{1,2,3,4,5\}}_{V}, \underbrace{\{(1,2),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)\}}_{E})
$$

But recall our theorem
Suppose, for REG in \mathbb{R}^{d}
A1. each patch contains at least $d+1$ nodes
A2. the nodes are in generic positions
Then
uniqueness of solution to $\mathrm{REG} \equiv$ rigidity of the body graph

Graph (embedding) rigidity: Generic embedding

Rigidity is a generic property

Given a graph, one of the following is true

- every generic embedding is rigid
- every generic embedding is non-rigid

Generic embedding \Longrightarrow rigidity becomes a property of the graph

To test if this can be uniquely registered

Theorem: Uniqueness of solution

Suppose, for REG in \mathbb{R}^{d}

A1. each patch contains at least $d+1$ nodes

A2. the nodes are in generic positions

Then

Corollary for $\mathrm{d}=2:$ REG in \mathbb{R}^{2}

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then
uniqueness of solution to REG $\equiv 3$-connectivity of the body graph

Corollary for $\mathrm{d}=2:$ REG in \mathbb{R}^{2}

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then
uniqueness of solution to REG $\equiv 3$-connectivity of the body graph
connected graph
\exists path between every pair of vertices

3-connected graph

remains connected if ≤ 3 vertices removed

Corollary for $\mathrm{d}=2:$ REG in \mathbb{R}^{2}

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then
uniqueness of solution to REG $\equiv 3$-connectivity of the body graph
can be tested in linear time

```
3-connected graph
remains connected if \leq 3 vertices removed
```


Corollary for $\mathrm{d}=2:$ REG in \mathbb{R}^{2}

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then
uniqueness of solution to REG $\equiv 3$-connectivity of the body graph
can be tested in linear time
existing tests for 2D rigidity: quadratic time

Summary

- Registration problem: assign global coordinates to points based on partial observations in $\underbrace{\text { different local coordinate systems }}$ related via rigid transforms
- Focus: when is the solution unique
- Under mild assumptions: uniqueness equivalent to rigidity of the body graph
- Corollary for 2D networks: need only test 3-connectivity (linear time)

Thank You

