When can a System of Subnetworks be Registered Uniquely?

Aditya V. Singh Kunal N. Chaudhury

Department of Electrical Engineering Indian Institute of Science

May 15, 2019

System of equations

GIVEN

Nodes: 1, ..., N (in \mathbb{R}^d) Patches: P₁, ..., P_M P_i $\subset \{1, ..., N\}$ $\mathbf{x}_{k,i}$: local coordinate of node k if $k \in P_i$ UNKNOWNS \mathbf{z}_k : global coordinate of node k \mathcal{R}_i : rigid transform corresponding to P_i, i.e. if $k \in P_i$

 $\mathbf{z}_k = \mathcal{R}_i(\mathbf{x}_{k,i}) = \mathbf{O}_i \, \mathbf{x}_{k,i} + \mathbf{t}_i$

Registration Problem

Find $\textbf{z}_1,\ldots,\textbf{z}_{\rm N}\text{, }\mathcal{R}_1,\ldots,\mathcal{R}_{\rm M}$ such that

 $\mathbf{z}_k = \mathcal{R}_i(\mathbf{x}_{k,i}), \quad k \in \mathbf{P}_i, \quad i \in [1 : \mathbf{M}].$

(REG)

System of equations

GIVEN Nodes: 1, ..., N (in \mathbb{R}^d) $P_i \subset \{1,\ldots,N\}$ Patches: P_1, \ldots, P_M $\mathbf{x}_{k,i}$: local coordinate of node k if $k \in \mathbf{P}_i$ UNKNOWNS \mathbf{z}_k : global coordinate of node k \mathcal{R}_i : rigid transform corresponding to P_i , i.e. if $k \in P_i$ $\mathbf{z}_{k} = \mathcal{R}_{i}(\mathbf{x}_{k}) = \mathbf{0}_{i} \mathbf{x}_{k} + \mathbf{t}_{i}$ $\mathcal{R}: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ **Registration Problem** $\mathbf{x} \mapsto \mathbf{0}\mathbf{x} + \mathbf{t}$ **O**: orthogonal matrix, **t**: translation Find $\mathbf{z}_1, \ldots, \mathbf{z}_N, \mathcal{R}_1, \ldots, \mathcal{R}_M$ such that $\mathbf{z}_k = \mathcal{R}_i(\mathbf{x}_{k,i}), \quad k \in \mathbf{P}_i, \quad i \in [1:M].$ (REG)

Find $\textbf{z}_1, \dots, \textbf{z}_N, \, \mathcal{R}_1, \dots, \mathcal{R}_M$ such that

$$\mathbf{z}_k = \mathcal{R}_i(\mathbf{x}_{k,i}), \quad k \in \mathbf{P}_i, \quad i \in [1:\mathbf{M}].$$
 (REG)

Original network

Given data

Find $\textbf{z}_1,\ldots,\textbf{z}_N,~\mathcal{R}_1,\ldots,\mathcal{R}_M$ such that

$$\mathbf{z}_k = \mathcal{R}_i(\mathbf{x}_{k,i}), \quad k \in \mathbf{P}_i, \quad i \in [1:\mathbf{M}].$$
 (REG)

observer observer observer 1 2 3 node 1**X**1,1 **X**1,2 \mathbf{Z}_1 node 2 **x**_{2,1} **X**_{2,3} \mathbb{Z}_2 node 3 **X**3,1 **X**3,3 **Z**3 node 4 **X**4,2 **X**4,**3** \mathbb{Z}_4 node 5**X**5,2 X5,3 Z_5

Original network

Given data

Find $\textbf{z}_1,\ldots,\textbf{z}_N,\,\mathcal{R}_1,\ldots,\mathcal{R}_M$ such that

$$z_{1} = \mathcal{R}_{1}(\mathbf{x}_{1,1}) = \mathcal{R}_{2}(\mathbf{x}_{1,2})$$

$$z_{2} = \mathcal{R}_{1}(\mathbf{x}_{2,1}) = \mathcal{R}_{3}(\mathbf{x}_{2,3})$$

$$z_{3} = \mathcal{R}_{1}(\mathbf{x}_{3,1}) = \mathcal{R}_{3}(\mathbf{x}_{3,3})$$

$$z_{4} = \mathcal{R}_{2}(\mathbf{x}_{4,2}) = \mathcal{R}_{3}(\mathbf{x}_{4,3})$$

$$z_{5} = \mathcal{R}_{2}(\mathbf{x}_{5,2}) = \mathcal{R}_{3}(\mathbf{x}_{5,3})$$

 $k \in \mathbf{P}_i, \quad i \in [1 : \mathbf{M}].$ (REG) observer observer observer 2 3 1 node 1**X**1,1 **X**1,2 \mathbf{Z}_1 node 2 **X**_{2,1} **X**_{2,3} \mathbb{Z}_2 node 3 **X**3,1 X_{3,3} **Z**3 node 4 **X**4,2 **X**4,3 \mathbb{Z}_4 node 5**X**5,2 X5,3 Z_5

Given data

Original network

Find $\textbf{z}_1,\ldots,\textbf{z}_N$, $\mathcal{R}_1,\ldots,\mathcal{R}_M$ such that

 $\mathbf{z}_k = \mathcal{R}_i(\mathbf{x}_{k,i}), \quad k \in \mathbf{P}_i, \quad i \in [1 : \mathbf{M}].$

(REG)

• Does a solution exist? Yes! Ground truth

Is this solution unique ... up to congruence?
 We are interested only in relative positions and transformations

Theorem: Uniqueness of solution

Suppose, for REG in \mathbb{R}^d

A1. each patch contains at least d + 1 nodes

A2. the nodes are in generic positions

Then

Theorem: Uniqueness of solution

Suppose, for REG in \mathbb{R}^d

Rationale

Rigid transform determined by action on d + 1 points in generic positions

A1. each patch contains at least d + 1 nodes

A2. the nodes are in generic positions

Then

5

•3

•4

2•

1•

To test if this can be uniquely registered ...

. . . test if this graph is rigid

GIVEN

- undirected graph: G = (V, E)
- embedding of G in \mathbb{R}^d : mapping $V \to \mathbb{R}^d$

Graph
G =
$$\left(\{1, 2, 3\}, \{(1, 2), (1, 3), (2, 3)\}\right)_{E}$$

GIVEN

• embedding of G in
$$\mathbb{R}^d$$
: mapping $V \to \mathbb{R}^d$

$$G = \left(\{1, 2, 3\}, \{(1, 2), (1, 3), (2, 3)\} \right)$$

$$V$$
Embedding in \mathbb{R}^2

$$V$$

GIVEN

- undirected graph: G = (V, E)
- embedding of G in \mathbb{R}^d : mapping $V \to \mathbb{R}^d$

Graph

$$G = \left(\{1, 2, 3\}, \{(1, 2), (1, 3), (2, 3)\} \right)$$
Embedding in \mathbb{R}

GIVEN

• undirected graph: G = (V, E)

• embedding of G in \mathbb{R}^d : mapping $V \to \mathbb{R}^d$

Graph (embedding) rigidity: Generic embedding

Rigidity is a generic property

Given a graph, one of the following is true

- every generic embedding is rigid
- every generic embedding is non-rigid

Generic embedding \implies rigidity becomes a property of the graph

To test if this can be uniquely registered ...

... test if this graph is rigid

Theorem: Uniqueness of solution

Suppose, for REG in \mathbb{R}^d

A1. each patch contains at least d + 1 nodes

A2. the nodes are in generic positions

Then

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to $REG \equiv 3$ -connectivity of the body graph

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to ${\rm REG}\equiv$ 3-connectivity of the body graph

connected graph

 \exists path between every pair of vertices

3-connected graph

remains connected if \leq 3 vertices removed

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to $REG \equiv 3$ -connectivity of the body graph

can be tested in linear time

3-connected graph

remains connected if \leq 3 vertices removed

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to $REG \equiv 3$ -connectivity of the body graph

can be tested in linear time

existing tests for 2D rigidity: quadratic time

 Registration problem: assign global coordinates to points based on partial observations in different local coordinate systems

related via rigid transforms

Focus: when is the solution unique

Under mild assumptions: uniqueness equivalent to rigidity of the body graph

Corollary for 2D networks: need only test 3-connectivity (linear time)

Thank You