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Need to deduce observers’ transforms



System of equations

given

Nodes: 1, . . ., N (in Rd)

Patches: P1, . . ., PM Pi ⊂ {1, . . . ,N}
xk,i : local coordinate of node k if k ∈ Pi

unknowns

zk : global coordinate of node k

Ri : rigid transform corresponding to Pi , i.e. if k ∈ Pi

zk = Ri (xk,i ) = Oi xk,i + ti

Registration Problem

Find z1, . . . , zN, R1, . . . ,RM such that

zk = Ri (xk,i ), k ∈ Pi , i ∈ [1 : M]. (reg)

R : Rd −→ Rd

x 7−→ Ox+ t

O: orthogonal matrix, t: translation
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Registration Problem
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z1 = R1(x1,1) = R2(x1,2)
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global
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node 5 x5,2 x5,3 z5
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Registration Problem

Find z1, . . . , zN, R1, . . . ,RM such that

zk = Ri (xk,i ), k ∈ Pi , i ∈ [1 : M]. (reg)

Does a solution exist?
Yes! Ground truth

Is this solution unique . . . up to congruence?
We are interested only in relative positions and transformations
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Theorem: Uniqueness of solution

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes

A2. the nodes are in generic positions

Then

Rationale

Rigid transform determined by action
on d + 1 points in generic positions

uniqueness of solution to reg ≡ rigidity of the body graph
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uniqueness of solution to reg ≡ rigidity of the body graph
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Graph (embedding) rigidity: Setup

given

I undirected graph: G = (V ,E )

I embedding of G in Rd : mapping V → Rd

question: Can we have an embedding which preserves edge lengths,
but has a different shape?
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Graph (embedding) rigidity: Graph vs Embedding
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(
{1, 2, 3, 4, 5}

V

, {(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)}
E

)

1 2

34

5

1 2

3

4

5

1 2

34

5

This embedding is not rigid

This embedding is rigid

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph



Graph (embedding) rigidity: Graph vs Embedding
G =

(
{1, 2, 3, 4, 5}

V

, {(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)}
E

)

1 2

34

5

1 2

3

4

5

1 2

34

5

This embedding is not rigid

This embedding is rigid

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph



Graph (embedding) rigidity: Graph vs Embedding
G =

(
{1, 2, 3, 4, 5}

V

, {(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)}
E

)

1 2

34

5

1 2

3

4

5

1 2

34

5

This embedding is not rigid

This embedding is rigid

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph



Graph (embedding) rigidity: Graph vs Embedding
G =

(
{1, 2, 3, 4, 5}

V

, {(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)}
E

)

1 2

34

5

1 2

3

4

5

1 2

34

5

This embedding is not rigid

This embedding is rigid

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph



Graph (embedding) rigidity: Graph vs Embedding
G =

(
{1, 2, 3, 4, 5}

V

, {(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)}
E

)

1 2

34

5

1 2

3

4

5

1 2

34

5

This embedding is not rigid

This embedding is rigid

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph



Graph (embedding) rigidity: Graph vs Embedding
G =

(
{1, 2, 3, 4, 5}

V

, {(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)}
E

)

1 2

34

5

1 2

3

4

5

1 2

34

5

This embedding is not rigid

This embedding is rigid

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph



Graph (embedding) rigidity: Graph vs Embedding
G =

(
{1, 2, 3, 4, 5}

V

, {(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)}
E

)

1 2

34

5

1 2

3

4

5

1 2

34

5

This embedding is not rigid

This embedding is rigid

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph

But recall our theorem . . .

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph



Graph (embedding) rigidity: Generic embedding

Rigidity is a generic property

Given a graph, one of the following is true

I every generic embedding is rigid

I every generic embedding is non-rigid

Generic embedding =⇒ rigidity becomes a property of the graph
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Theorem: Uniqueness of solution

Suppose, for reg in Rd

A1. each patch contains at least d + 1 nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ rigidity of the body graph



Corollary for d = 2: reg in R2

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to reg ≡ 3-connectivity of the body graph

connected graph

∃ path between every pair of vertices

3-connected graph

remains connected if ≤ 3 vertices removed
can be tested in linear time

existing tests for 2D rigidity:
quadratic time
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Summary

I Registration problem: assign global coordinates to points based on partial
observations in different local coordinate systems︸ ︷︷ ︸

related via rigid transforms

I Focus: when is the solution unique

I Under mild assumptions: uniqueness equivalent to rigidity of the body graph

I Corollary for 2D networks: need only test 3-connectivity (linear time)
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