



### MOTIVATION

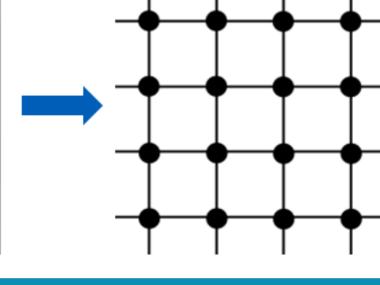
Two core problems within graph signal processing:

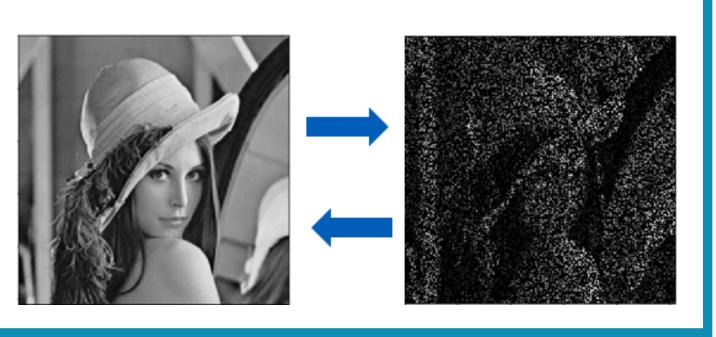
- How to sample/select the most representative (few) nodes of the graph?
- How to recover original representation based on these few samples?

One motivating application can be image compression:

- We can represent image as a grid graph with pixels being graph nodes:
- We can recover image by observing only small portion of graph nodes (pixels):







#### CONTRIBUTION

- we formulate graph sampling problem as Multi-Armed Bandit (MAB) problem
- the sample selection is performed by the "sampling agent" which crawls over the graph and decides whether or not a particular graph node should be sampled

### **PROBLEM FORMULATION**

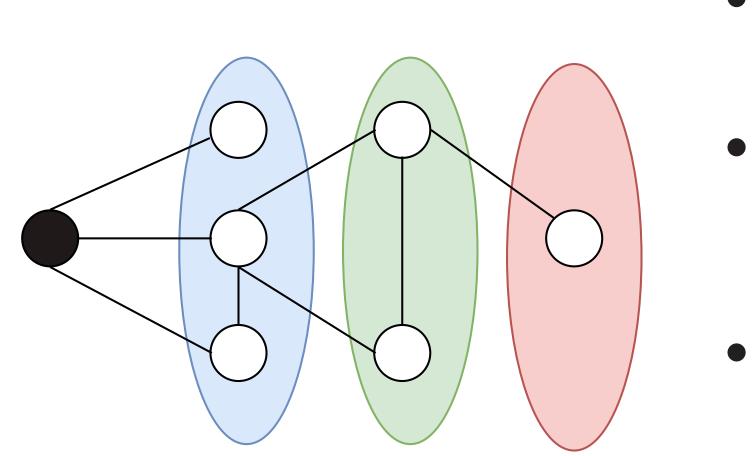
- given:
  - data graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
  - data graph specified by the adjacency matrix  $\mathbf{W} \in \mathbb{R}^{N imes N}_+$
  - each graph node is associated with label x[i]
  - we are provided with the desired sampling set size which is small compared to the size of the graph:  $|\mathcal{M}| \ll |\mathcal{V}|$
- goal:
  - For a fixed sampling set size (sampling budget)  $|\mathcal{M}|$  we want to choose the sampling set such that the signal samples  $\{x[i]\}_{i \in \mathcal{M}}$  carry maximal information about the entire graph signal.

# **GRAPH SIGNAL SAMPLING VIA REINFORCEMENT LEARNING**

OLEKSII ABRAMENKO AND ALEXANDER JUNG Aalto University, Finland

### SAMPLING AS MULTI-ARMED BANDIT PROBLEM

- Given action space with *H* actions  $\mathcal{A} = \{1, ...a, ...H\}$ .
- Graph is decomposed into *a*-step neighbourhoods based on the shortest path from the current location of sampling agent



• At a given time step *t*, the sampling agent chooses an action  $a \in \mathcal{A}$  which refers to the number of hops the sampling agent performs starting at the current node  $i_t$  to reach a new node  $i_{t+1}$ , which will be added to the sampling set, i.e.,  $\mathcal{M} := \mathcal{M} \cup$  $\{i_{t+1}\}.$ 

# HOW THE OPTIMAL POLICY IS LEARNED?

• Policy is represented as a probability distribution over arms of the MAB and parametrized by the trainable vector  $\mathbf{w} =$  $(w_1, \ldots, w_H)^T$ :

$$\pi^{(\mathbf{w})}(a) = \frac{e}{\sum_{b \in \mathcal{A}}}$$

• Reward is negative Mean Squared Error (MSE) of graph signal recovery:

$$MSE := (1/N) \sum_{j \in \mathcal{V}} (x|$$
$$R := -MS$$

• Weights are learned via standard gradient ascent:

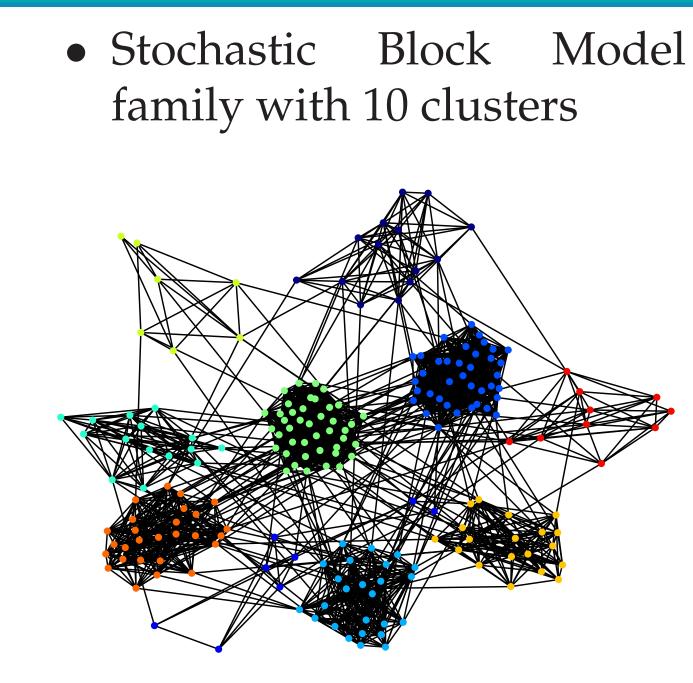
$$w_a := \begin{cases} w_a + \alpha R(1 - \pi(a)), a = a_k \\ w_a - \alpha R\pi(a), \forall a \neq a_k \end{cases}$$
  
for  $k = 1..M - 1, a \in \mathcal{A}$ 

• Training procedure aims at maximizing reward and, respectively, minimizing MSE of graph signal recovery

- filled node current location of sampling agent
- blue, green and red regions represent 1-,2-,3step neighbourhoods
- each *a*-step neighbourhood is associated with the *a*-th arm of the hypothetical MAB machine

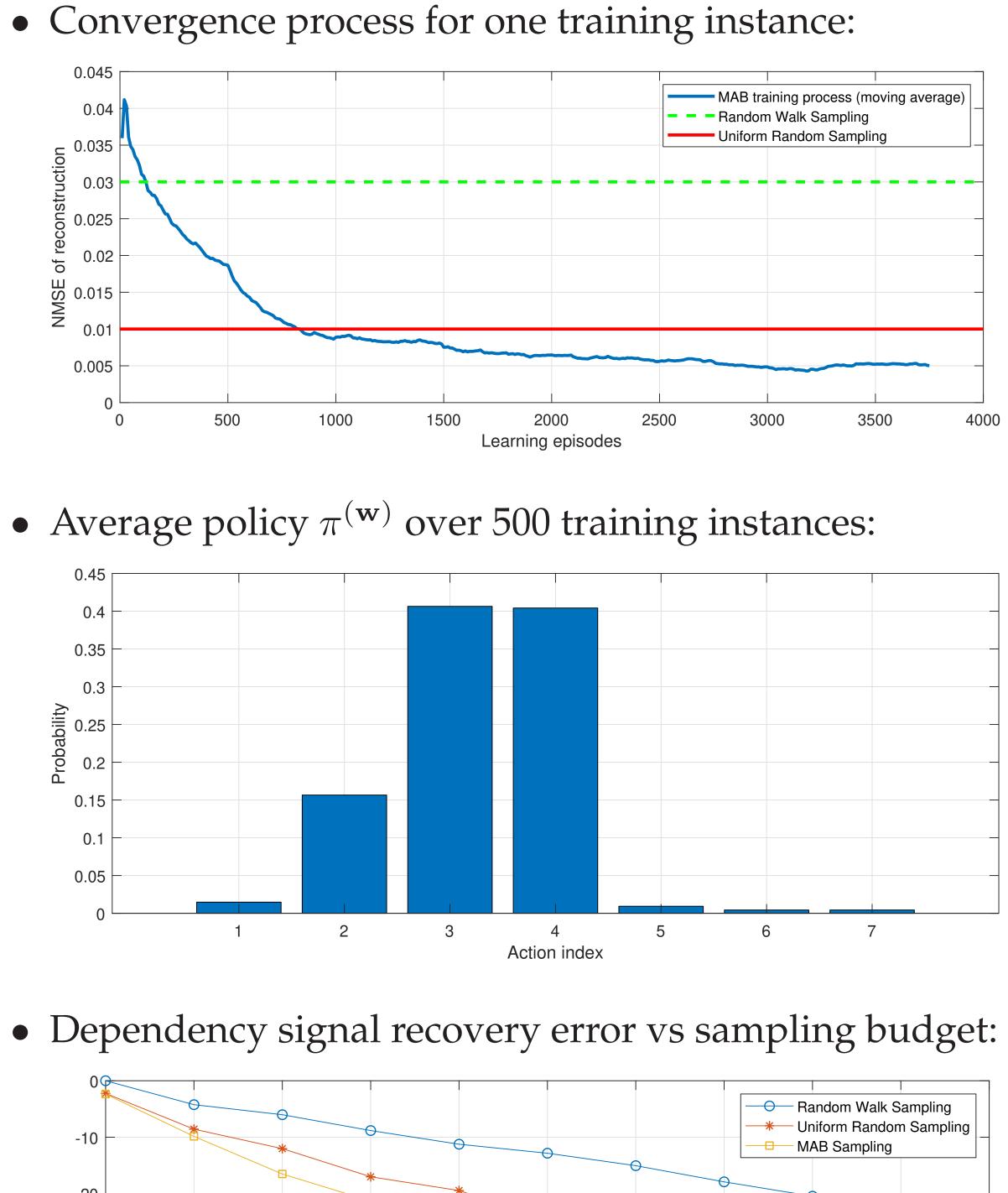
 $r[j] - \hat{x}^{\mathcal{M}}[j])^2$ 

# **SIMULATION SETUP**



### **SIMULATION RESULTS**

0.1



#### • cluster sizes have geometric distribution with probability of success 0.08 • signal values in *i*-th cluster are all equal to *i* • intra-cluster connection probability p 0.7, $\equiv$ inter-cluster connection probability q = 0.01

