

Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech

Zhaocheng (David) Huang, Julien Epps, Dale Joachim

Outline

- Motivation
- Related Work
 - Speech articulation affected by depression \rightarrow Speech Landmarks
- Proposed Features based on landmark bigrams
 - Bigram-count
 - LDA-bigram
- Dataset
 - The SH2 Corpus
- Experimental Settings
- Results
- Conclusions
- Future Work

Motivation

- Depression is a big burden to the society.
- To date, depression detection has primarily focused on laboratorycontrolled clean speech samples, which is atypical in naturalistic environments.
- Smartphones: offer huge potential in spreading depression screening, which however has some challenges.
 - environmental noise
 - various handset characteristics
- Speech Articulation → Speech Landmarks

Related Work

- Speech articulation affected by depression
 - cognitive impairment,
 - phonation and articulation errors,
 - articulatory incoordination,
 - disturbances in muscle tension, phoneme rates,
 - altered speech quality and prosody.

Cummins, N., S. Scherer, J. Krajewski, S. Schnieder, J. Epps, and T. F. Quatieri, "A review of depression and suicide risk assessment using speech analysis," *Speech Commun.*, vol. 71, pp. 10–49, Jul. 2015.

Stevens, K. N., S. Y. Manuel, S. Shattuck-Hufnagel, and S. Liu, "Implementation of a Model for Lexical Access based on Features," in ICSLP, 1992, no. October, pp. 499–502.

Related Work

- Speech articulation affected by depression
 - cognitive impairment,
 - phonation and articulation errors,
 - articulatory incoordination,
 - disturbances in muscle tension, phoneme rates,
 - altered speech quality and prosody.
- Speech landmarks are symbols associated with speech articulation
 - Introduced by K. Stevens in 1992
 - Linguistic or lexical:
 - Speech recognition [Park 2002; Stevens et al 2002; Johnson et al 2004]
 - Paralinguistic:
 - Parkinson's disease and sleep deprivation [Ishikawa et al 2017]
 - Emotion recognition [Dai et al 2008]
 - Vocalization Age [Fell et al 2002]

Cummins, N., S. Scherer, J. Krajewski, S. Schnieder, J. Epps, and T. F. Quatieri, "A review of depression and suicide risk assessment using speech analysis," *Speech Commun.*, vol. 71, pp. 10–49, Jul. 2015. Stevens, K. N., S. Y. Manuel, S. Shattuck-Hufnagel, and S. Liu, "Implementation of a Model for Lexical Access based on Features," in ICSLP, 1992, no. October, pp. 499–502.

What are speech Landmarks ?

- Symbols about articulatory changes
 - Determined based on energy changes across several frequency bands and multiple time scales

Landmark	Description
g	sustained vibration of vocal folds starts (+) or ends (-)
р	sustained periodicity begins (+) or ends (-)
S	opening (+) or closing (-) of the velopharyngeal port during a sonorant sound
f	frication onset (+) or offset (-)
V	voiced frication onset (+) or offset (-)
b	onset (+) or offset (-) of existence of turbulent noise during obstruent regions

Landmarks → Landmark Bigrams

- More complex patterns about speech articulation
- Transitions from one landmark to another richer information

Proposed Landmark Features – Bigram-count

- Count how many times each bigram occurs
- Concatenate all counts

$$c = [c^{g+,g+}, \dots, c^{i,j}, \dots, c^{b-,b-}]$$

Proposed Landmark Features – LDA-bigram

- Latent Dirichlet Allocation (LDA)
 - LDA for text \rightarrow latent topic modelling
 - Why LDA for landmark bigrams? → latent articulatory events

Image Credit: Blei 2010

Text

Document \rightarrow topics (e.g. sports) topic \rightarrow words (e.g. football)

LDA gives a vector of probabilities for latent topics in document.

Speech \rightarrow articulation (e.g. vocal fold) articulation \rightarrow bigrams (e.g. "g+,g-")

LDA gives a vector of probabilities for latent articulatory events in speech.

Proposed Landmark Features – LDA-bigram

- LDA-bigram
 - N bigram, K events, D speech files.
 - $\boldsymbol{\theta}_{d} \sim \text{Dir}(\alpha) = \{ \theta_{d,1}, \dots, \theta_{d,k}, \dots, \theta_{d,K} \}, \sum_{i=1}^{K} \theta_{d,i} = 1$

•
$$\beta_k \sim \text{Dir}(\eta) = \{\beta_{k,1}, \dots, \beta_{k,n}, \dots, \beta_{k,N}\}, \sum_{n=1}^N \beta_{k,n} = 1$$

- $w_{d,n} \sim \operatorname{Multi}(\beta_{Z_{d,n}=k})$
- Overall, $z_{d,n}$, β_k , and θ_d together describe relationships for <u>speech-articulation-bigram</u>, similar to <u>document-topic-</u> <u>word</u> in topic modelling $p(\boldsymbol{\beta}, \boldsymbol{\theta}, \boldsymbol{z} | \boldsymbol{w}, \alpha, \eta)$
- Variational Bayesian Inference

 $q(\beta_k) \sim \text{Dir}(\lambda_k), q(\boldsymbol{\theta}_d) \sim \text{Dir}(\gamma_d), q(z_{d,n} = k) \sim \text{Multi}(\phi_{d,n}^k)$

- Training $\phi_{d,n}^{k} \propto \mathbb{E}_{q(\theta_{d})}[\log \theta_{d,k}] + \mathbb{E}_{q(\beta_{k})}[\log \beta_{k,w_{d,n}}]$ $\gamma_{d,k} = \alpha + \sum_{w} c_{d,w} \phi_{d,n}^{k}, \lambda_{k,w} = \eta + \sum_{d} c_{d,w} \phi_{d,n}^{k}$ - Testing: for a new speech file d^{*}

 $\gamma_{d^*,k} = \alpha + \sum_w c_{d^*,w} \phi_n^k$, $\theta_{d^*} \sim \text{Dirichlet}(\gamma_{d^*,1}, \dots, \gamma_{d^*,K})$

 θ_{d^*} gives a vector of probabilities for all latent articulatory events in each speech file

- speech-articulation
- articulation-bigram

speech-articulation-bigram

Dataset – the SH2 corpus [Huang et al, 2018]

- The SH2 corpus
 - Naturalistic: a variety of noises (e.g. office, restaurant, background TV noise, etc.); 28 device manufacturers.
 - 16 hours of speech; 887 speakers (450 males); 5937 voice recordings (sampled at 44.1kHz).
 - Six elicitation tasks
 - self-assessed Patient Health Questionnaire (PHQ-9)
 - Healthy: [0, 9]
 - Depressed: [10, 27]
 - There are 695 speakers (122 are depressed) for training and 192 speakers (35 are depressed) for testing.

Dataset – the SH2 corpus [Huang et al, 2018]

- Elicitation Tasks
 - Cognitive Load
 - Stroop test
 - Free Speech
 - Free response to questions like "what is the weather like outside"
 - Rainbow Passage
 - "When the sunlight strikes raindrops in the air, ... with little or no green or blue"
 - Harvard Sentence
 - "The birch canoe slid on the smooth planks.", etc.
 - Sustained Vowel
 - "ahh.."
 - Diadochokinetic
 - "PaTaKa"

Experimental Settings

- The SH2 corpus
- Classification Model:
 - Linear SVM, with optimized C value from 3-fold cross validation within the training set.
- Performance Metric
 - F1 score (depression) (chance=0.267), Unweighted Average Recall (UAR), Accuracy, Confusion Matrix.
- Speech Landmarks were extracted using the SpeechMark toolkit [Boyce et al 2012].
- LDA-bigram
 - The LDA #topic was optimized from 2 to 40, unless specified.
 - i.e. number of latent articulatory events.

- How well the proposed features perform?
 - Landmarks were added one-by-one for choosing effective bigrams
 - LDA-bigram tends to be better
 - It is important to tailor landmark choices

- How well the proposed features perform?
 - Landmarks were added one-by-one for choosing effective bigrams
 - LDA-bigram tends to be better
 - It is important to tailor landmark choices
- Remove task dependency
 - Task norm: z-normalization specific to each task.
 - Landmarks are specific to different elicitation tasks

- How well the proposed features perform?
 - Landmarks were added one-by-one for choosing effective bigrams
 - LDA-bigram tends to be better
 - It is important to tailor landmark choices
- Remove task dependency
 - Task norm: z-normalization specific to each task.
 - Landmarks are specific to different elicitation tasks
- How about optimizing landmark choices for each elicitation task?

- Landmark bigram features optimized for elicitation tasks
 - Bigram-count with tailored landmark choices
 - LDA-bigram with the same landmark choices as bigram-count
 - LDA-bigram, #topic =4, tailored landmark choices
 - It is beneficial to optimize landmark choices for both Bigram-count (1st column) and LDA-bigram (3rd column) within each task.
- How about fusing individual elicitation tasks together?

- Fusion of elicitation tasks.
 - Majority voting of binary outputs from individual tasks
 - The proposed features based on landmark bigrams are effective, compared with acoustic baseline.

		F1 (D)	Accuracy	UAR	Confusion Matrix
	Baseline [Huang et al 2018]: Acoustic features	0.422	72.9%	0.657	$\begin{bmatrix} 121 & 36 \\ 16 & 19 \end{bmatrix}$
Same landmarks	 Bigram-count[#] 	0.433	71.4%	0.669	$\begin{bmatrix} 116 & 41 \\ 14 & 21 \end{bmatrix}$
across all tasks	− LDA-bigram [#]	0.431	65.6%	0.679	$\begin{bmatrix}101&56\\10&25\end{bmatrix}$
Tailored landmarks	Bigram-count [*]	0.506	78.7%	0.714	$\begin{bmatrix} 130 & 27 \\ 14 & 21 \end{bmatrix}$
for each task	– LDA-bigram [*]	0.549	78.7%	0.758	$\begin{bmatrix} 126 & 31 \\ 10 & 25 \end{bmatrix}$

Huang, Z., J. Epps, D. Joachim, and M. C. Chen, "Depression Detection from Short Utterances via Diverse Smartphones in Natural Environmental Conditions," in *INTERSPEECH*, 2018, pp. 3393–3397.

- Fusion of elicitation tasks.
 - Majority voting of binary outputs from individual tasks
 - The proposed features based on landmark bigrams are effective, compared with acoustic baseline.
 - Performances were significantly improved when fusing individual tasks with tailored landmarks.

		F1 (D)	Accuracy	UAR	Confusion Matrix
	Baseline [Huang et al 2018]: Acoustic features	0.422	72.9%	0.657	$\begin{bmatrix} 121 & 36 \\ 16 & 19 \end{bmatrix}$
Same landmarks	Bigram-count [#]	0.433	71.4%	0.669	$\begin{bmatrix} 116 & 41 \\ 14 & 21 \end{bmatrix}$
across all tasks	LDA-bigram [#]	0.431	65.6%	0.679	$\begin{bmatrix} 101 & 56 \\ 10 & 25 \end{bmatrix}$
Tailored landmarks	Bigram-count [*]	0.506	78.7%	0.714	$\begin{bmatrix} 130 & 27 \\ 14 & 21 \end{bmatrix}$
for each task	LDA-bigram [*]	0.549	78.7%	0.758	$\begin{bmatrix} 126 & 31 \\ 10 & 25 \end{bmatrix}$

Conclusions

- Two novel sets of features based on speech landmark bigrams for depression detection under naturalistic environment
 - Bigram-count
 - LDA-bigram
- Novel paradigm with potential
 - Robustness & interpretability
- Significances:
 - First study to apply landmark bigrams for depression detection, which is promising.
 - Large number of speakers (887 in total)
 - No gap between PHQ-9 in determining the healthy and depressed.

Future Work

- A new paradigm in processing speech in symbols.
 - In-depth analysis and interpretability
 - Symbolic \rightarrow NLP methods
 - We looked at count, how about duration (timing)?
- Applicable to other health disorders
 - Alzheimer's disease
 - Parkinson disease
 - Bipolar disease
 - Dementia
 - Vocal disorders
 - Dysarthria, Dysphonia, Laryngitis, etc.

THANK YOU

zhaocheng.huang@unsw.edu.au j.epps@unsw.edu.au djoachim@sondehealth.com

