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LMS does not Converge!?

Heuristics + Steepest Descent

Problem: Minimize instantaneous
squared error 1

2e
2
t (w)

where the error signal is
et(w) = yt − xT

t w .

Steepest Descent gives classic form

wnew

ŵt
= wold

ŵt−1
+ gain

µ ∗
gradient

xt
∗ error

et

et = yt − xT
t ŵt−1

But µ−scaling is ignored.
To choose µ it has to be scaled:
µ = µo

σ2
x

where µo is scale free.

Error Analysis

Weight error =w̃t = ŵt − wt . Then

δw̃t = −µxtx
T
t w̃t−1 + µxtnt + δwt

where δwt = wt − wt−1.

• This is a time-variant stochastic
difference equation and so its
state does not converge.
• But under certain regularity

conditions it does settle into a
steady state.
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LMS Hovers

Averaging Analysis

Need realization-wise analysis.
• Sum the error system
w̃T+N − w̃T =
−µΣT+N

T xtx
T
t w̃t−1 + µΣT+N

T xtnt

• Change is slow so:
⇒ w̃T+N − w̃T ≈
−µΣT+N

T xtx
T
t w̃T−1 + µΣT+N

T xtnt

• Now approximate with averages
⇒ w̃T+N−w̃N ≈ −µNRx w̃T−1+0
• Now difference
⇒ δmt = −µRxmt−1 + (δwt)

This is the averaged system and
is stable if 0 < µλmax (Rx ) < 2 a

aODE, Weak convergence can’t give this

Averages

Assume, as N →∞:
• Stationary Regressors

1
N ΣT+N

T xtx
T
t → Rx

• Stationary Noise ⊥ Regressors
1
N ΣT+N

T xtnt → 0.

Hovering Theorem

What does the original system do?
• It hovers/jitters/fluctuates in the

vicinity of the equilibrium points
of the averaged system.
• To complete the stability analysis

one needs a Hovering Theorem
which links the two trajectories.
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LMS Performs

Widrow et.al. 1976

Introduced fundamental measures of
performance.
P(µ) = E (w̃tw̃

T
t ).

E(µ) = E (e2t ) = E (yt − xT
t ŵt−1)2

They look simple but are very
challenging to calculate.

Weight Error Variance

Under S⊥F :
stationarity+ noise⊥

regressors +fixed w
it can be shown that
P(µ) = Po + o(µ) where

RxPo + PoRx = Fxn(0) = Σ∞−∞γ
x
kγ

n
k

MSE

Under S⊥F it can be shown
E(µ) = µtr(Fxn(0)) + o(µ).

White Noise Fallacy

With either white regressors or white
noise (or both) the formulae reduce
to the all white noise formulae with
Fxn(0) = γx

0γ
n
0 .

This explains mistaken claims that
the all white noise formulae are
always correct.
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Network LMS Stability

Node-wise Measurements

Each node records measurements
related to a common weight vector.
yk,t = xT

k,twe + nk,t

for k = 1, · · · ,N.
LMS has various NW extensions;
but all use local information.

Network LMS does not Converge

ŵt =
AT

2 (AT
o − µRt)AT

1 ŵt−1 + µAT
1 σ

xy
t

Ai are adjacency matrices.
Rt = bdiag(xk,tx

T
k,t)

σxy
t = [xk,tyk,t ]

Error System

Unexpectedly, the error system is a
two-time scale system
δθt = µf (t, θt−1, ξt−1) ←slow
ξt = Sξt−1 + µg(t, θt−1, ξt−1) ←fast

Under S⊥F +
M = A1AoA2 is primitive e.g.
strongly connected & ≥ 1 self loop.
⇒ M is left stochastic (1TM = 1T )

and so has a Perron right
eigenvector with unit eigenvalue.
• Set A = ΣN

1 αkRx ,k where αk

depend on the Perron eigenvector.
• Then the averaged system is

stable if µ× spec.rad .(A) < 2.
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Network LMS Performance

Network Weight Error Variance

Under S⊥F and M primitive.

P(µ) = Poµ+ o(µ) where
APo +PoA = Fxn(0) = ΣN

1 α
2
kFxnk (0)

Fxnk (0) = Σ∞−∞γ
xk
r γ

nk
r

Network MSE

Under S⊥F and M primitive.

E(µ) = µtr(Fxn(0)) + o(µ).

White Noise Fallacy

With either white regressors or white
noise (or both) the formulae reduce
to the all white noise formulae with
Fxnk (0) = γnk

0 γ
xk
0 .

This explains mistaken claims that
the all white noise formulae are
always correct.
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Education Notes∗

Averaging

First order averaging is easy to
teach but extremely powerful.
Two-time scale phenomena are
crucial but poorly treated
(Kokotovic).

Simulation

Badly done (Ripley).
Design is poorly motivated.
Tracking is ignored.
Scaling is ignored.
Visualization is uneven (Tufte).

Hardware

Emerging opportunities for simple
physical demos.

Emerging Applications

Networks
Internet of Things
NextG Communications (Quantum?)
Cyber Security (from DSP/Control

angle)

New Approaches

IEEE Magazines provide a superb
source of projects/implicit teaching
approaches + offline via forwards

backwards ASP.

∗ Beware the two ’adaptive’ imposters in: Statistics; Spatial Signal Processing
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The Future of ASP

Strengths

• Cheap tracking in real time.
⇒ Cheap Tracking offline.
(noncausal methods are costly).
• TV-parameters are ubiqitos

but widely ignored online&
offline

Weaknesses

FIR.
⇒Causal basis systems
(e.g. Laguerre) - big potential
Kernel versions?

DESIGN

Opportunities

Streaming Data
Event Triggered Data (Point Processes)
Biomedical → Neuroimaging

and Neuroscience
Internet of Things

Challenges

• Machine Learning (McL) and AI
communities shows little awareness of
Adaptive Signal Processing/Control.
• Their algorithms reflect no training in:

Physics/Dynamics/
Stability/Autocorrelation.
• Push back: go to McL conferences!
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Conclusions

Design

LMS is the ’gift that keeps giving’.
Why? Because it is:

Linear, Adaptive, Design flexible

Analysis

Averaging is simple but can handle
any kind of Adaptive algorithm in any
scenario. It can be developed
heuristically as well as rigorously.

Education

Hands on + Simulation taken
seriously + analysis via Averaging +
emerging applications

The Future

Big data provides huge opportunities
for adaptive algorithms both online
and offline.

Physics/Dynamics/Stability/Autocorrelation

are central to real time data analysis.
Uninformed by these knowledge
realms, McL/AI solutions will fall
(even catastrophically) short†

Vivat ASP/DSP!∗

†’Universal’ algorithms too conservative
∗ and Control!
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