Highlights

- We propose a novel agglomerative clustering method base on *unmasking*, a technique that was previously used for authorship verification of text documents [5] and for abn event detection in video [4].
- In order to join two clusters, we alternate between: . training a binary classifier to distinguish between the samples from cluster and the samples from the other cluster;
- 2. removing at each step the most discriminant features.
- We conduct experiments on three benchmark data sets order to compare our clustering method with the k-mear algorithm as well as the clustering algorithm presented
- The empirical results indicate that our approach can significantly outperform the considered baselines.

Method

- Input data and parameters:
- \diamond *m* training samples;
- \diamond the number of clusters **k**;
- \diamond the number of unmasking iterations *n*;
- the number of features s to be removed at each iterat
- Our algorithm starts with K clusters ($K \gg k$) and execu following steps:
- 1. For each pair of clusters *i* and *j*, we assume that the samples in cluster *i* belong to a different class than the samples in cluster *j* and compute a score that indicat likelihood of the statement "clusters i and j should be to be true.
- 2. Randomly split the samples in each cluster into a train and a testing set of equal size.
- 3. Train a linear Support Vector Machines (SVM) classifi the training set (until convergence) and evaluate it on test set, retaining the accuracy rate.
- 4. Sort the weights of the SVM by their absolute values descending order, take the first s indexes of the sorte then remove the corresponding features from all the s in the training and test sets.
- 5. Repeat steps 3 and 4 for *n* iterations, retaining the ac rate at each iteration.
- 6. Merge each cluster *i* with the cluster *j* (using a Greed approach), such that the score of joining clusters *i* an maximum, for all $j \in \{1, 2, \dots, K\}$, with $j \neq i$.
- 7. If the number of clusters k is reached at any point du merging process, halt the execution and return the cu cluster assignments. Otherwise, continue by computi merging scores for the newly-formed clusters.

CLUSTERING IMAGES BY UNMASKING – A NEW BASELINE

	D)atasets						
based r normal		 MNIST. The MNIST database contains 60,000 and 10,000 test samples of digits from 0 to 9 (UIUCTex. The UIUCTex data set contains 100 of 640 × 480 pixels representing different type as bark, wood, floor, water, and more (25 class Oxford Flowers. The Oxford Flowers data set images, with a number of 80 images per categories. 						
s in Ins	F	eatures						
in [3].	 Deep supervised features provided by the first layer (known as <i>fc6</i>) of the VGG-f model [2], w on ImageNet (4096 features). Handcrafted features from a standard bag-of-v 							
			SIFT descriptors (4		Ŭ	' V		
		ore-trained extract fea	upervised features d AlexNet architect atures from the <i>cor</i> 3456 features).	ure prov	ided by (С		
tion.	Evaluation Metrics							
utes the	•		e report the unsupervised clustering accurac ormalized Mutual Information (NMI) score on					
ne						_		
tes the		Reculte d	on IIIIICTev an	d Ovfo	rd Elo			
e joined"								
		Features	Method		CTex	_		
ning set				ACC	NMI			
		-	Random chance	4.00%	_			
fier on			SVM	97.20%	—			
n the		VGG-f	K-means	48.20%	70.15%			
			Unmasking (n=1)	19.80%	54.81%			
in			Unmasking	61.40%	74.94%			
ed list,			SVM	94.60%	-			
samples		BOVW	K-means	25.40%	46.83%			
			Unmasking (n=1)					
ccuracy			Unmasking		58.81%			
			SVM	96.20%				
dy		AlexNet			58.52%			
nd <i>j</i> is		AICAINCI	Unmasking (n=1)					
			Unmasking (II=1)		69.78%			
iring the								
urrent			ering performance of v					
ing the		0	on the UIUCTex and th es are better.	e Uxtord F	-lowers tes	S		

Mariana-Iuliana Georgescu, Radu Tudor Ionescu

Department of Computer Science, University of Bucharest, Romania

0 train samples (10 classes). 00 texture images
es of textures such
ses).

t contains **1360** gory (**17** classes).

fully-connected which is pre-trained

visual-words based

d from the Caron et al. [1]. We nsupervised neural

cy (ACC) and the n the test set.

/ers

	Oxford Flowers					
ACC	NMI					
6.67\$	-					
95.50%	-					
60.35%	69.55%					
45.50%	62.98%					
67.50%	75.82%					
80.83%	-					
22.10%	22.83%					
12.83%	14.64%					
25.00%	25.37%					
81.00%	-					
26.89%	30.43%					
9.80%	18.19%					
33.33%	38.00%					

st sets. Higher ACC

Results on MNIST

Method Random chanc SVM K-means IDEC [3] Unmasking (n= Unmasking

Table: Clustering performance of various baselines versus clustering by unmasking on the MNIST test set. Higher ACC or NMI values are better.

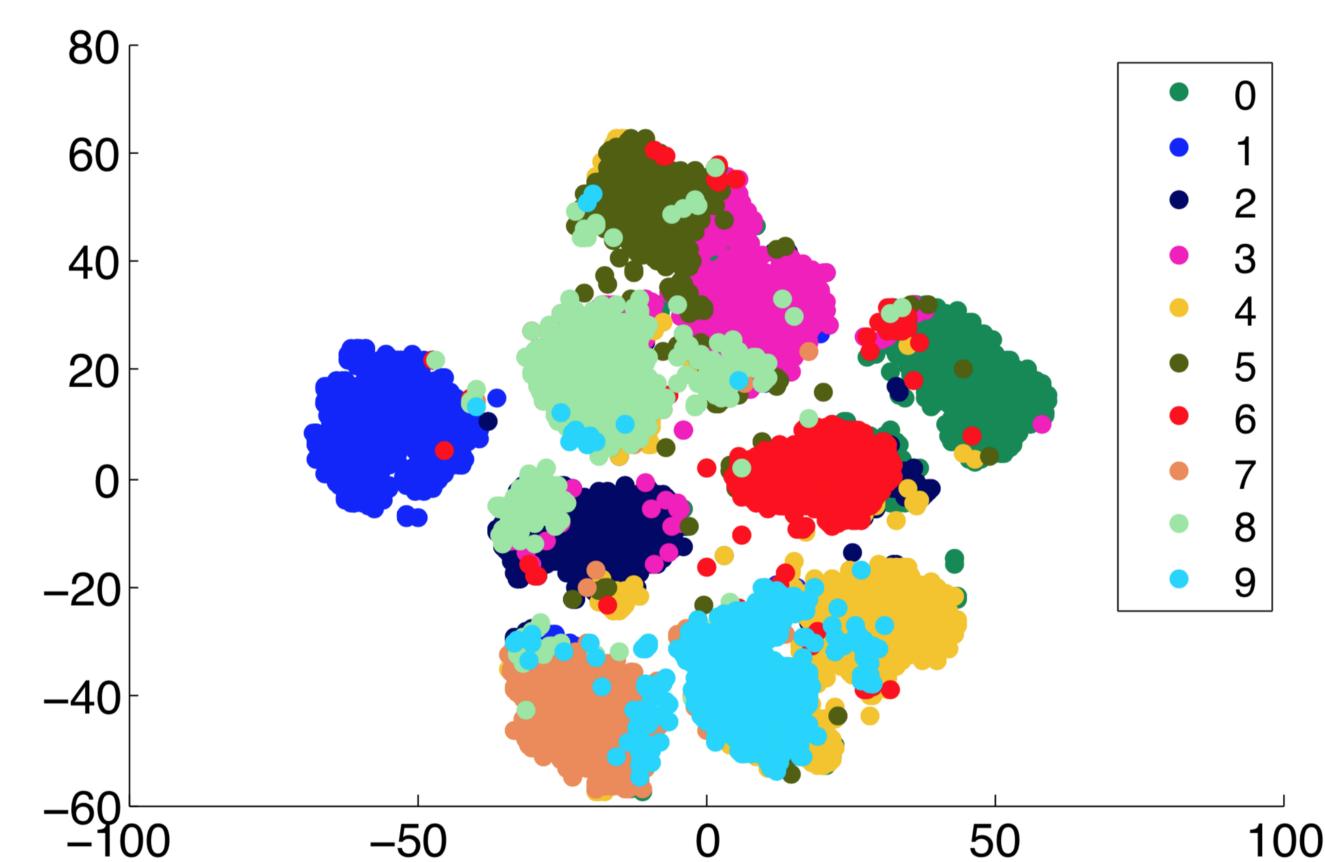


Figure: Visualization (provided by t-SNE) of unmasking-based clustering results on the MNIST test set.

References

- [1] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep Clustering for Unsupervised Learning of Visual Features. In *Proceedings of ECCV*, volume 11218, pages 139–156, 2018.
- of BMVC, 2014.
- of IJCAI, pages 1753–1759, 2017.
- [4] Radu Tudor Ionescu, Sorina Smeureanu, Bogdan Alexe, and Marius *ICCV*, pages 2895–2903, 2017.
- [5] Moshe Koppel, Jonathan Schler, and Elisheva Bonchek-Dokow. of Machine Learning Research, 8:1261–1276, December 2007.

	ACC	NMI
Ce	10.00%	-
	94.40%	-
	55.82%	52.18%
	71.45%	69.40%
=1)	72.58%	64.99%
	81.40%	69.76%

[2] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the Devil in the Details: Delving Deep into Convolutional Nets. In Proceedings [3] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved Deep

Embedded Clustering with Local Structure Preservation. In *Proceedings*

Popescu. Unmasking the abnormal events in video. In *Proceedings of*

Measuring Differentiability: Unmasking Pseudonymous Authors. Journal

raducu.ionescu@gmail.com