

COMPRESSIVE SENSING RECONSTRUCTION BASED ON STANDARDIZED GROUP SPARSE REPRESENTATION

Zhirong Gao¹, Lixin Din¹, Chengyi Xiong², Zhongyi Gong², Qiming Xiong³

¹ School of Computer Science, Wuhan University, Wuhan, China

² College of Electronic and Information Engineering, South-Central University for Nationalities, Wuhan, China

³ School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China

HIGHLIGHTS

- A new method for image compressive sensing reconstruction (ICSR) is proposed based on the z-scores standardized group sparse representation (ZSGSR).
- Reconstruction model: firstly, extracts the similar patch groups of the image, decomposed by adaptive PCA dictionary; then, normalize the resulting coefficients using z-score standardization in component-wise, and using L1 norm regularize recovery.
- Solved by splitting Bregman iteration and soft threshold shrinking algorithm.
- ZSGSR improve the sparse representation ability of the image and better restore the edges and texture details

PROPOSED METHOD

Mathematical model of proposed ZSGSR based method

 $\min_{x} \frac{1}{2} \|\Phi x - y\|_{2}^{2} + \lambda \sum_{k} \left\| \frac{\Psi_{k} G_{x_{k}} - \mu_{k}}{\sigma_{k}} \right\|_{1}$

- Where *y* is measure, *x* is the reconstructed image, and μ and σ are the estimated mean and covariance vectors
- Iterative solution of model using SBI algorithm

$$f^{(t+1)} = \arg\min_{f} \lambda \sum_{k} \left\| \frac{\Psi_{k} G_{f_{k}} - \mu_{k}}{\sigma_{k}} \right\|_{1} + \frac{\eta}{2} \left\| x^{(t)} - f - b^{(t)} \right\|_{2}$$
$$x^{(t+1)} = \arg\min_{x} \frac{1}{2} \left\| \Phi x - y \right\|_{2}^{2} + \frac{\eta}{2} \left\| x - f^{(t+1)} - b^{(t)} \right\|_{2}^{2},$$
$$b^{(t+1)} = b^{(t)} - (x^{(t+1)} - f^{(t+1)})$$

ALGORITHM SUMMARY

- Initially reconstruct image X⁽⁰⁾ by MH method
- Iteratively update image By the ZSGSR based method, through repeating the following steps:
- S1: Divide the image into many overlapping blocks
- S2: Form the similar patches group, and perform filtering by an adaptive soft threshold shrinking method
- S3: Obtain an updated image by solving a quadratic function minimum
- S4: Determine whether to terminate the iteration
- Output the final reconstructed image X

OBJECTIVE EVALUATION

 Average PSNR(DB)/SSIM COMPARISON OF SEVERAL RECONSTRUCTION ALGORITHMS

SR	Algorithms						
	τv	ΜН	RCoS	GSR[1]	GSR-NCR[2]	TNNM[3]	Ours
0.1		24.40/ 0.7451			•	27.21/ 0.8548	27.52/ 0.8562
0.2		26.83/ 0.8473				31.76/ 0.9232	32.01/ 0.9234
0.3		30.13/ 0.9040			•	34.65/ 0.9494	34.97/ 0.9512
0.4		32.28/ 0.9218				37.07/ 0.9656	37.35/ 0.9662

SUBJECTIVE EVALUATION

Fig. 1: visual comparison of the reconstructed Leaves at SR=0.1

Fig. 2: visual comparison of the reconstructed Plane at SR=0.1

REFERENCES

[1] J. Zhang, D. Zhao, and W. Gao, "Group-based sparse representation for image restoration," IEEE Transactions on Image Processing, vol.23, no.8, pp.3336-3351, 2014.

[2] Z. Zha, X. Zhang, Q. Wang, L. Tang, and X. Liu, "Group-based sparse representation for image compressive sensing reconstruction with non-convex regularization," Neurocomputing, vol.296, pp.55-63, 2018.

[3] T. Geng, G. Sun, Y. Xu, et al. "Truncated Nuclear Norm Minimization Based Group Sparse Representation for Image Restoration," SIAM Journal on Imaging Sciences, vol.11, no.3, pp. 1878-1897, 2018.