
LOW DOSE ABDOMINAL CT IMAGE RECONSTRUCTION: AN UNSUPERVISED 

LEARNING BASED APPROACH 

 

Shiba Kuanar1, Vassilis Athitsos2, Dwarikanath Mahapatra3, K.R. Rao1, Zahid Akhtar4, Dipankar Dasgupta4 

 

Department of 1Electrical and 2Computer Science Engineering, University of Texas Arlington, USA 
3 Research Staff Member, IBM Research, Melbourne, Australia 

 4 Department of Computer Science, University of Memphis, USA 

 
 

ABSTRACT 

In medical practice, the X-ray Computed tomography-based 

scans expose a high radiation dose and lead to the risk of 

prostate or abdomen cancers. On the other hand, the low-

dose CT scan can reduce radiation exposure to the patient. 

But the reduced radiation dose degrades image quality for 

human perception, and adversely affects the radiologist’s 

diagnosis and prognosis. In this paper, we introduce a GAN 

based auto-encoder network to de-noise the CT images.  Our 

network first maps CT images to low dimensional manifolds 

and then restore the images from its corresponding manifold 

representations. Our reconstruction algorithm separately 

calculates perceptual similarity, learns the latent feature 

maps, and achieves more accurate and visually pleasing 

reconstructions. We also showed the effectiveness of our 

model on a number of patient abdomen CT images, and 

compare our results with existing deep learning and iterative 

reconstruction methods. Experimental results demonstrate 

that our model outperforms other state-of-the-art methods in 

terms of PSNR, SSIM, and statistical properties of the image 

regions. https://github.com/ShibaPrasad/CT-Image-Reconstruction 

Index Terms— Auto-encoder, Low dose CT Image, 

De-noise, Manifold, and GAN. 

 

1. INTRODUCTION 

The X-ray Computed Tomography (CT) has become a 

valuable modality in medical imaging to obtain direct 

visualization of patient anatomy [15] and demonstrate 

tremendous clinical values. But the CT exam involves in 

high radiation exposure to patients and leads to the concerns 

of lifetime risk of cancer [16], and [19].  On the contrary, 

lowering radiation dose increases artifact and noise in the 

reconstructed image. Due to the ill-posed nature of low dose 

CT image reconstruction, more advanced methods are 

needed to improve the diagnostic performance. Therefore, it 

is the central topic to develop effective image processing 

methods to reduce X-ray exposure while maintaining the 

clinically acceptable image quality. A simple way to lower 

X-ray exposure is to reduce the milliampere-second (mAs) 

level in a CT scan. However, this approach reduces number 

of X-ray photons reaching the detector, which increases the 

quantum noise of X-ray projection data. If reconstruction 

algorithm remains unchanged, the quality of reconstructed 

CT images would be deteriorated by noise-contaminated 

projection data and yields the amplified noise and streak 

artifacts [18].  

 

Over the years, numerous research efforts have been devoted 

reconstructing the CT images and broadly fall into three 

groups a) sinogram pre-filter for reconstruction, b) iterative 

optimization, and c) image post-processing. As included in 

[22], the noise characteristics in sinogram domain are well 

modeled for pre-filtering. However, the sinogram data’s are 

not widely accessible to users and may suffer from edge 

blurring, artifacts, and resolution loss. Differently, post-

processing methods [21] directly operates on images and 

often introduces over-smoothing in the processed images. 

Typically, the iterative algorithms optimize an objective 

function, include image priors like the total variation (TV) 

[15], and a statistical noise model [20], [17]. As a result, 

these iterative algorithms indeed improves the image quality 

but at cost of high computation. With the given non-uniform 

noise distribution in CT images, these problems are even 

more difficult to address. In spite of the above algorithmic 

implementations, reconstructed image still loses some visual 

details and needs improvement. Inspired by the recent deep 

learning success [3], [1], [8], [4], biomedical researchers 

also extended the deep learning techniques on low dose CT 

reconstruction problems. Subsequent, complex models were 

proposed to handle low dose CT problems such as RED-

CNN [9], Wasserstein GAN [24] and wavelet network [10].  

 

Usually, the CT images are not uniformly distributed in a 

high dimensional Euclidean space. Mathematically, true CT 

images reside on a low-dimensional manifold structure 

formed by the image pixel values. The success of the above 

mentioned image processing approaches essentially makes 

an assumption about the structure of low-dimensional 

subspace, describes it in a geodesic distance term, and uses 

that to constrain the sharper and noise details in the image. 

Hence, the effectiveness of these methods lies in the 

accurate approximation of true feature map or manifold 

https://github.com/ShibaPrasad/CT-Image-Reconstruction


learning on latent space. Deep neural networks are extremely 

effective to accurately capture the underlying manifold 

structures by studying data points in the high-dimensional 

space. With the numerous available patient CT images, it is 

potentially possible to derive the manifolds of the abdomen 

CT images using advanced neural networks. The derived 

manifold can be then employed in image reconstruction 

problem as a constraint to regulate the solution to image 

quality and remove contaminations. With this idea in mind, 

we propose a RegNet based auto-encoder network that 

learns manifold as an image prior and performs the image 

reconstruction. In auto-encoder model, the generative (G) 

and discriminator network (D) compete for one against the 

other and train in an end to end framework. While D is 

trained to discriminate between generated and real images, 

G is trained to produce realistic images from a random 

vector. The G and D are then trained by following a 

nonlinear mini-max optimization as described in [6], [23].  

                                           
Fig. 1: Proposed reconstruction by manifold in latent space. 

 

2. METHODS 

To build an effective model for image reconstruction, we 

implemented a paired encoder-decoder interface of a simple 

GAN architecture [12] (Fig. 2). Let x ϵ RN×N denotes a low 

dose CT image and x' ϵ RN×N  correspond to the normal dose 

CT image. The goal of our reconstruction process is to 

search for a function F that maps x to x', i.e. F: x → x'. On 

the other hand, sample x is taken from low dose CT image 

with distribution PL and x' from normal dose CT images with 

real distribution Pr. But our function F map samples from PL 

into a certain distribution Pg. By varying function F, we treat 

the reconstruction operator as moving from one data 

distribution (Pg) close to other distribution (Pr). As shown in 

Fig. 1, our encoder maps input x into a latent space z: fθ(x), 

and decoder learns function gφ(z) which brings back image 

x' close to the input image. The generator fθ () transforms 

noisy samples to mimic a real sample, whereas gφ() is 

trained to do the classification task on the decoder side. 
During our training, the discriminator is trained to become 

an optimal classifier for a fixed G and generator minimize 

search by minimizing the Wasserstein distance between Pr 

and Pg distributions. Typically, noises in x-ray measurement 

are statistically modeled as a combination of quantum 

Poisson noise and additive white Gaussian noise. But the 

noise model in image reconstruct is usually complicated and 

distributed non-uniformly across the whole image. These 

uncertainties of noise models can be ignored in deep 

learning, as neural networks extract feature representations 

from input image patches through series of coarser-to-finer 

convolution and learn data distribution efficiently. 

                                      

2.1. Perceptual Loss 

In many real-time applications, a mathematical equation is 

used to compare the image similarity. Two images may look 

same to the normal human eyes but vary mathematically and 

may not produce the satisfactory results. During the 

reconstruction process, the color, texture, and object shapes 

are not properly preserved from layers of learning [3], [24]. 

To overcome the dissimilarity, a perceptual loss function is 

included to our network for feature learning. A separate 

perceptual loss function is included in the feature space to 

keep the image details and represented as below: 

 

   (1) 

 

Where RegNet(fθ(x)) is a feature vector extractor, and d, W, 

and H stand for depth, width, and height of the feature space 

respectively. In our implementation, we adopted a RegNet-

50 pre-trained Keras model as our feature extraction. The 

input CT images are duplicated to make color channels and 

are fed into the RegNet network. The RegNet network 

contains fifty convolution layers followed by one fully 

connected layer (FC). The output of the final convolution 

layer is a feature vector extracted by our network and used 

in the perceptual loss function. For our convenience, we 

designate the perceptual loss as RegNet loss. So our final 

loss function is expressed as: 

                    
 

where λ1 is a regularization term which controls the trade-

off between RegNet perceptual loss and WGAN adversarial 

loss [5]. 

3. AUTO-ENCODER NETWORK 

As shown in the Fig. 2, our model includes a scalable 

architecture with three components. The first component is 

the CNN generator which includes six convolution layers. 

The input CT image to the generator passes through a stack 

of convolution layers with various receptive fields with a 

kernel size of 3×3 and followed by a 2×2 max-pooling in 

each layer. All hidden layers are equipped with Rectified 

Linear Unit non-linearity (ReLU, max (0, x)) and applied 

thresholding on filter responses. The second part of the 

network contains a pre-trained RegNet network [4] (upper 

half in Fig. 2) and calculates perceptual loss for better image 

enhancement. The output manifold (z) from the generator 

and ground truth are fed into the RegNet pre-trained network 

for respective feature extraction. As explained in Eq. (1), the 

objective loss is computed using the extracted features from 

the above two specified layers. The reconstruction errors are 



                                
Fig. 2: Auto-encoder architecture: Generator, Discriminator, and RegNet for perceptual loss. 

 

then back propagated to update the generator weight while 

keeping RegNet parameters intact. The third part of our 

model is a discriminator D, which includes eight convolution 

layers with a structure inspired by model [2], [4], and [7]. 

The first two convolution layers have 64 filters, followed by 

four convolution layers of 96 filters, and last two layers with 

128 filters. All convolutional layers in discriminator have a 

kernel size of 3×3. After eight convolution layers, two fully-

connected (FC) layers are included, of which first has 1024 

outputs and the last layer has a single output. As explained 

in [5], the sigmoid cross entropy layer is not included at the 

end of the discriminator. The network is trained using image 

patches derived from entire images. After each epoch, we 

calculated the loss over all the image patches for validation.  

In Fig. 3 it is observed that increasing the number of epochs 

reduces the Wasserstein distance, as the decay rate becomes 

smaller. This indicates the effectiveness of our RegNet loss 

introduced in WGAN-RegNet model. 

          
Fig.  3: Loss graphs of our model on training and validation dataset  

 

4. EXPERIMENT 

In our experiments, 4250 patient abdomen quarter dose CT 

images have been collected from publicly available cancer 

imaging archive (TCIA) [13] and AAPM-Mayo Clinic Low 

Dose 2018 datasets [11] for model training and validation. 

Among them, 3800 randomly selected images are used to 

train encoder-decoder network to generate image manifolds 

in latent space and rest are considered for testing purpose. 

During the training step, 10% of training data are employed 

as validation to monitor the network performance and tuned 

hyper parameters. All the CT images have a resolution of 

512×512 pixels and a pixel size of 0.875×0.875 mm2. In our 

data set, images with a different resolution are resampled to 

this resolution via bilinear interpolation. 

 

4.1. Training 

To use dataset efficiently we adopted two data augmentation 

techniques, i.e. horizontal flipping, and rotation by degrees 

of 90, 180 and 270. The objective loss functions L on Eq. 

(2) was minimized using the stochastic gradient descent 

optimization with standard back propagation. The layer 

weight parameters are initialized from a zero-mean Gaussian 

with 0.05 standard deviation. We followed the training steps 

explained in [12], [14] and performed our end-to-end 

optimization. The momentum parameter was set to 0.99 and 

training was regulated by a weight decay of 0.0001.  The 

hyper-parameter λ1 value was set to 7, learning rate to 

1×10−4, number of epochs to 200, and the number of 

iterations the discriminator followed were set to 10. For 

each epoch, the discriminator sampled a batch of 64 ground 

truth NDCT images. The generator output the latent space 

LDCT manifolds from respective input patches and updated 

the discriminator loss function recursively. Similarly, the 

generator processed a batch of input LDCT images, NDCT 

images (perceptual loss update), and updated generator loss. 

The whole process continued for a total number of 120 

epochs. So both generator and discriminator counterfeited 

each other and optimized their respective loss functions with 

a global minimum. Our implementation was derived on 

python based Tensorflow/Keras framework with ten hours of 

training on an NVIDIA K40 GPU computer. The network 

parameters are converged after 600 iterations. 

 

5. RESULTS AND ANALYSIS 

In this section, we reported the effectiveness of our model in 

low dose CT reconstruction. The performance of proposed 

model was evaluated by using the PSNR and SSIM metrics 

on test images (Fig. 4). The experimental results of various 

models are summarized in Table II. It is observed that our 

WGAN-RegNet achieves the best in terms of SSIM, PSNR 

and RMSE metrics, and TV [15] method performs the worst. 



Table I: Statistical Analysis (Mean ± SD) of Image Quality associated with different Models 

                           

                        
Fig. 4: Reconstruction comparison results on test samples. (a), (e) Ground truth; (b) Iterative total-variation; (c) FBPConvNet; (d), (h) Our 

proposed method; f) Wavelet-CNN method; g) RED-CNN method respectively. The CT images are displayed in a window [-210, 300] HU. 

 

The comparisons are made between input CT images and its 

corresponding outputs from heuristics TV method, and CNN 

methods. We find that the reconstructed output images from 

our model (in Fig. 4), preserves most of the original input 

CT image structures, which demonstrates the capability of 

our model learning from the latent space. Quantitative 

evaluations of the low-dose CT reconstruction results using 

testing images are summarized in Table I, and II. It is 

observed that our proposed model outperformed other 

methods in all the metrics significantly.   

 

Table II: Quantitative results from different model outputs    

 
For our quantitative evaluation, 25 references low dose CT 

images are used for the testing. Using different models the 

corresponding reconstructed images are randomly selected 

for expert evaluation (Table I). Artifact reduction, contrast 

retention, image quality, and noise suppression are included 

as qualitative indicators with five assessment grades: from 5 

(best) to 1 (worst). Two radiologists R1 and R2 with years 

of clinical experience scored these images. The reference 

images are used as the gold standard. For each set of images, 

the scores are reported as (mean ± standard deviations). As 

demonstrated in Table I, the images reconstructed by TV are 

much poorer than that on the reference images in terms of 

the scores. The scores of our proposed model are closer to 

the ones of reference images which indicates the robustness 

of our model. The student's t-test with p < 0.05 is performed 

to assess discrepancy and results are summarized in Table I. 

The t-test results also show a similar trend that differences 

between reference images and the results from our model are 

statistically significant in all qualitative indices. 

 

6. CONCLUSIONS 

In this paper, we describe an autoencoder-RegNet based 

framework for the low-dose CT image reconstruction and 

compare it to baseline algorithms. The experimental results 

demonstrate that our model helps in improving image quality 

and avoids noise effect commonly suffered by MSE based 

image generators. The quantitative analysis shows that our 

model provides higher PSNR, SSIM, and better statistical 

properties of denoised CT images relative to those of normal 

CT images. However, using the GAN model alone reduces 

noise, but at the expense of losing some critical features. 

Therefore, an additive loss function i.e. RegNet perceptual 

loss is added to final cost functions that guide the denoising 

process. As a result, the reconstructed images become closer 

to the gold standard. The experimental results on the clinical 

real images show that our proposed auto-encoder model not 

only removes sharp features effectively but also generates an 

image with increased contrast.  On a future direction, we 

would like to extend our model to find the image similarity 

search on latent space over huge clinical image dataset. This 

can be helpful in finding better treatment plans and spatial 

accuracy in the dose delivery for diagnosis and prognosis.  
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