

BACKGROUND & MOTIVATION

- RGB-Thermal object tracking attempts to locate target object using complementary visual and thermal infrared data
- How to learn discriminative and robust features is an import topic of RGBT tracking
- We propose target-oriented dual-attention mechanism for robust RGBT tracking, which includes local attention and global attention.

• The pipeline of our tracker

LEARNING TARGET-ORIENTED DUAL ATTENTION FOR ROBUST RGB-T TRACKING Rui Yang, Yabin Zhu, Xiao Wang, Chenglong Li, Jin Tang School of Computer Science and Technology, Anhui University, Hefei, China

- Training:
- \rightarrow (+) \rightarrow Classification Loss + **Attention Regularization**
 - Prediction : **Binary Classification**
 - Global **Proposals**
- Target-driven Attention Map

THE LOCAL ATTENTION

$$R_{(y=1)} = \frac{\sigma_{A_p}}{\mu_{A_p}} + \frac{\mu_{A_n}}{\sigma_{A_n}}$$

network :

$$L = L_c + \lambda * [y * R_{(y=1)} + (1 - y) * R_{(y=0)}]$$

where L_c is the cross entropy loss

THE GLOBAL ATTENTION

- The limitation of local search strategy: When the target is lost, it's difficult for the tracker to find it back
- To address this limitation, we propose a global proposal generating network to generate the proposals from the whole image

We backward propagate the score map to obtain two attention maps for each proposal, including positive attention map A_p and negative attention map A_n , then calculating the regularization terms for positive(y=1) and negative(y=0) samples:

$$R_{(y=0)} = \frac{\mu_{A_p}}{\sigma_{A_p}} + \frac{\sigma_{A_n}}{\mu_{A_n}}$$

We add the regularization term to the training loss to train the

Table 1. The tracking results with different values of λ .

λ	1	2	3	4	5	6	7	8	9
PR	84.3	84.9	84.3	84.8	83.5	84.1	83.8	84.6	84.7
SR	67.4	67.4	67.7	67.4	66.9	67.5	67.1	66.9	67.7

(b). The tracking results of RGBT-234 dataset.