DENSE OPTICAL FLOW FOR THE RECONSTRUCTION OF WEAKLY TEXTURED AND STRUCTURED SURFACES: APPLICATION TO ENDOSCOPY Tan-Binh Phan¹, Dinh-Hoan Trinh¹, Dominique Lamarque², Didier Wolf¹ and Christian Daul¹ ¹ Université de Lorraine and CNRS, CRAN, UMR 7039, 2 avenue de la Forêt de Haye, 54518 Vandœuvre-lès-Nancy cedex, France ² AP-HP Hôpital Ambroise Paré, 9 avenue Charles de Gaulle, 92104 Boulogne-Billancourt cedex, France

Scientific challenges

- > Few textures and structures,
- \succ Illumination changes, few contrast,
- Small field of view, camera close to object surface,
- > Artifacts (reflections, saturations, etc.).

Contributions

- Adaption of Structure from Motion (SfM)-based methods to the surface reconstruction of hollow organs seen in endoscopic video sequences.
- Proposal of an effective Dense Optical Flow (DOF)-based SfM approach.
- Accuracy evaluation of the proposed method using phantom data and robustness assessment on real medical data (gastroscopy).

Surface reconstruction pipeline

Principle of our SfM pipeline

Determination of camera poses and dense 3D point clouds

images)

(a) SIFT matches (b) Optical flow

Proposed DOF-based SfM method **Determination of pairs of overlapped images** $\mathbf{v}_{i,i+1}\left(v_{i,i+1}^1,v_{i,i+1}^2\right) = \mathbf{OF}_{i,i+1}(\mathbf{c}),$ where c(W/2, H/2) is the image center point and **OF** is the optical = (Vi,)' flow computed by [1]. Vij • $\mathbf{v}_{i,j} = \sum_{t=i_0}^{j_0-1} \boldsymbol{v}_{t,t+1} (v_{t,t+1}^1, v_{t,t+1}^2),$ W where $i_0 = \min(i, j)$, $j_0 =$ max(i,j), |i-j| > 1.• Image I_i is called τ - $Area_{ij} =$ overlapped with image \mathbf{I}_i if the area of $\mathbf{I}_i \cap \mathbf{I}_i$ is greater than τ pixels. ι, Γ **Experimental results** 2. Subjective evaluation **(b)** a gastroscopic video and three images selecamong the 101 images of the sequence. Surface

generation texturing

Video of the reconstructed surface and images of the pyloric antrum under two viewpoints.

$$(W - |v_{i,j}^{1}|) (H - |v_{i,j}^{2}|) > \tau, -W < v_{i,j}^{1} < W, -H < v_{i,j}^{2} < H$$

Observation:

If (A_0, A_1, \dots, A_j) is a HP-group, then set (A_0, A_1, \dots, A_j) belongs to an overlapping (common) image region showing a same scene part.

Our idea:

- Determination for each I_i of its set of overlapped images.
- Determination of reference images with Algorithm 1 (paper).
- 3. Generation of HP-groups.

HP-group definition: • A_0 is a point in a reference image \mathbf{I}_i^{rej} and • A_1, \ldots, A_i are homologous points of A_0 , then (A_0, A_1, \dots, A_i) is defined as a HP-group.

[1] D.-H. Trinh and C. Daul, "On illumination-invariant variational optical flow for weakly textured scenes," Computer Vision and *Image Understanding*, vol. 179, pp. 1–18, 2019.

[2] J. L. Schonberger and J.-M. Frahm, "Structure-from-motion revisited," in IEEE Conf. on Computer Vision and Pattern *Recognition*, 2016, pp. 4104–4113.

(a) Four viewpoints among the 111 images acquired for the phantom. (b) Snapshot of the phantom: ${}^{D_{GT}}/{d_{GT}} = 3.972$. (c) Surface reconstructed by the proposed method: ${}^{D}/{d} = 3.945$.

ape criterion (%) $ \frac{\left {}^{D_{GT}} / {}_{d_{GT}} - {}^{D} / {}_{d} \right }{{}^{D_{GT}} / {}_{d_{GT}}} $	Outlier rate (in %)	Mean outlier error (in mm)	Computation time (seconds)
99.33%	6.18%	5.65 mm (3.54% D_{GT})	4749
99.48%	7.48%	6.92 mm ($4.34\% D_{GT}$)	2646