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ABSTRACT

Multiple atmospheric pollutants, such as PM2.5, PM10, and
NO2, degrades air quality in many parts of the world. Fine-
grained air pollution data can help combat the problem, but
conventional monitoring stations are too expensive to sup-
port high spatial resolution; image-based estimates have the
potential to improve spatial coverage. We estimate pollutant
concentrations from images using the position-and color-
dependent properties of scattering and absorption. We are the
first to use images to estimate pollutant concentrations in sys-
tems with multiple pollutants. We achieve this by considering
the differences in scattering and absorption spectra between
different pollutants. Our system improves the accuracy of
PM2.5, PM10, and NO2 estimation by 22% for single-scene
images in Beijing and Shanghai compared to the best existing
image-based techniques.

Index Terms— Air Quality, Light Attenuation, Support
Vector Regression, Atmospheric Modeling

1. INTRODUCTION

A 2014-2015 study found that only 25 out of 190 cities within
China met the National Ambient Air Quality Standards
(NAAQS) [1]. The annual average concentration of PM2.5
for the 190 cities was 57 µg/m3, which is 62.9% above the
NAAQS limit [1]. Traditional stationary air quality sensors
are sparsely deployed, with only 35 in Beijing [2]. To com-
bat air pollution, it is important to determine how pollutant
concentrations vary at high spatial and temporal resolutions.
Deploying numerous conventional sensors is unrealistic be-
cause they are expensive and require maintenance. Since air
quality can be estimated by observing haze effects in images,
digital cameras can be used to quantify and analyze pollutants
across large areas. Their ubiquity suggests the possibility of
improving both spatial and temporal sampling resolutions.

Estimating air quality from images is an active research
area. He et al. propose using a dark channel defined as the
darkest pixels within the localized patches to estimate airlight
and transmission [3]. Liu et al. describe various image fea-
tures for estimating PM2.5 concentration [4]. Liu et al. esti-
mate PM2.5 concentration through support vector regression

using image features and weather data [5]. Their approach
requires manually labeling regions of interest. Li et al. [6]
estimate PM2.5 concentration using depth and transmission
maps, where depth is estimated via deep convolutional neural
fields. Liu et al. implemented an image crowdsensing system
to obtain PM2.5 concentration [7]. The above work neglects
absorption and estimates PM2.5 concentration only.

This paper presents a method of estimating air quality that
considers pollutant spectra, models scattering and absorption
in the atmosphere, and considers non-uniform spatial distribu-
tions. This is the first system that uses images to estimate the
concentrations of multiple pollutants simultaneously, namely
PM2.5, PM10, and NO2, and to use images for NO2 estima-
tion. Our experiments on datasets from Beijing and Shang-
hai show that considering position-dependent color properties
improves accuracy by 22%.

2. VISIBILITY PHYSICS

Previous research on estimating air quality from images uses
an atmospheric model to describe an image influenced by
haze [8] [9]:

I(x) = J(x)t(x) +A(1− t(x)) and (1)

t(x) = e−βd(x), (2)

where x is the location of the pixel, I is the observed im-
age, J is scene radiance (the image without any haze), A is
atmospheric light, t is transmission, β is the scattering co-
efficient, and d is depth. The atmospheric light, commonly
known as the airlight, results from scattering and absorption.
The color of the original scene shifts towards airlight, the ag-
gregate color of the atmospheric particles and gases, as dis-
tance increases.

Eqs. (1) and (2) are based on the following three as-
sumptions: the properties of light attenuation are color-
independent, the light attenuation coefficient is influenced
by scattering only (absorption is negligible), and the atmo-
sphere is homogeneous. We show that these assumptions do
not hold and give a more accurate atmospheric model.

The level of visibility in the atmosphere is highly influ-
enced by pollutants and weather conditions. When light trav-



els through the atmosphere, it encounters particles and gases
that affect its path. Light attenuation is caused by both scat-
tering and absorption. Light scattering by particles is the main
cause of reduced visibility, but light absorption by both parti-
cles and gases accounts for up to 30% of reduced visibility in
urban areas [10] [11] [12].

Scattering and absorption are wavelength-dependent. For
components of PM2.5 and PM10 that are smaller than the
wavelength of light, relative scattering is inversely propor-
tional to wavelength. In addition, the relative absorptions of
PM2.5 and PM10 are inversely proportional to wavelength [13]
[14] [15]. Also, NO2 absorbs blue light heavily [16].

The atmospheric model in Eq. (1) and (2) demonstrates
two mechanisms that influence images: direct attenuation
and airlight. The direct attenuation represented by J(x)t(x)
causes the intensity of the pixels to decrease in a multiplica-
tive manner and due to scattering and absorption. The t(x)
term in direct attenuation models both scattering and absorp-
tion since the scene radiance J(x) models neither.

Airlight (A(1−t(x))) represents aggregate pollutant color
of the atmospheric particles and gases due to scattering and
absorption. The effect of the airlight on the light intensities
is additive, and the airlight increases as more light get scat-
tered due to particles. Since the airlight implicitly accounts
for absorption, t(x) only accounts for scattering.

We extend the atmospheric model from Eqs. (1) and (2)
to account for both scattering and absorption, as follows:

Ic(x) = Jc(x)t1c(x) +Ac(1− t2c(x)), (3)

t1c(x) = e−(βsc+βac )d(x), and (4)

t2c(x) = e−βscd(x). (5)

Eq. (3) incorporates transmission as a function of both scatter-
ing and absorption (t1), and transmission as a function of only
scattering (t2). In Eqs. (4) and (5), βs is the scattering coeffi-
cient and βa is the absorption coefficient. Additionally, every
variable represents color-dependent light attenuation through
a subscript c. Wavelength-dependent light attenuation is asso-
ciated with RGB color channels.

The atmosphere model used in prior work also assumes
that the attenuation coefficient (β) is constant for an entire im-
age. In realistic conditions, the density of particles and gases
changes as a function of position and altitude, leading to a
non-uniform light attenuation coefficient [17] [18]. We ex-
plicitly consider this effect.

3. METHODOLOGY

Our technique consists of two main steps: obtaining the trans-
missivities of scattering and absorption for all three color
channels based on Eqs. (3) to (5), and obtaining predicted
concentrations for PM2.5, PM10, and NO2 based on the tran-
missivities from the prior step.

Algorithm 1: Gradient Descent
Input: I(x), J(x), d(x), A, height, width
Output: βs, βa

1 while | βa − β′a |> γ or | βs − β′s |> σ do
2 β′a = βa, β′s = βs

3 Î(x) = J(x)e−(βs+βa)d(x) +A(1− e−βsd(x))

4 ε(x) = (Î(x)− I(x))/ (height × width)
5 C(x) = 1

2 × (Î(x)− I(x))2

6
dC(x)
dβs

= ε(x)d(x)e−βsd(x)(A− J(x)e−βad(x))

7
dC(x)
dβa

= −ε(x)d(x)J(x)e−(βs+βa)d(x)

8 βs = βs − α×
∑
x
dC(x)
dβs

9 βa = βa − α×
∑
x
dC(x)
dβa

10 end

3.1. Obtaining Transmissivities

We used the atmospheric model described in Eq. (3) to (5) to
obtain βsc and βac for all colors (c). I(x) is the input image.
Using the webcam image dataset and ground truth pollutants,
we obtain J(x) by collecting the images with the lowest PM10
concentrations and taking the mean of their color intensities
so J(x) contains as little air pollution as possible (typically
about 5% of the maximum). The depth map is obtained by
running a convolutional neural network by Li et al. [19] on
J(x). The airlight is estimated using the technique in Berman
et al. [20]. Afterward, the only unknown variables in Eq. (3)
are βsc and βac .

We use gradient descent to find βs and βa by minimizing
the cost function C(x) = 1

2 (Î(x)− I(x))
2, where Î(x) is the

predicted image calculated in Eq. (3) and I(x) is the actual
image. The gradient descent algorithm is shown in Algorithm
1. To improve convergence, the algorithm keeps track of the
last ten calculated βsc and βac values. If the past beta values
are stable, the step size (i.e., learning rate or α) decreases in
lines 8 and 9.

In the experimental setup, we split an image into an n×n
grid and obtain βsc and βac for each of the n2 grid elements
using gradient descent. Increasing the number of grid ele-
ments to obtain additional light attenuation coefficients (βsc
and βac ) increases estimation accuracy. This suggests that the
per-element transmissions are more accurate than the global
aggregate transmission. If that is the case, it is possible to use
variance in per-element transmissions to estimate the actual
variance in transmissions. Table 1 shows the standard devia-
tion in light attenuation over all grid elements in the image,
which increases as n increases.

3.2. Estimation of Pollutant Concentrations

After all coefficients βsc and βac are extracted from each im-
age, we determine their relationships with pollutant concen-



Table 1. Standard Deviation of Light Attenuation with Reso-
lution

Beijing Shanghai
βsb βsg βsr βsb βsg βsr

2×2 0.29 0.37 0.45 0.17 0.16 0.15
4×4 0.34 0.46 0.59 0.24 0.28 0.30
6×6 0.43 0.54 0.64 0.29 0.31 0.33
8×8 0.45 0.58 0.66 0.33 0.35 0.36

10×10 0.49 0.63 0.71 0.34 0.36 0.37

trations using support vector regression. Since PM2.5, PM10,
and NO2 have different color-dependent properties for scatter-
ing and absorption, it is possible to predict all the pollutants
from a single image. Given a dataset {(x1, y1), ..., (x, y)}, we
find a regression function f(x) = w × φ(x) + b that solves
the following optimization problem:

minimize
1

2
||w||22 +

1

λ

m∑
n=1

(ξ+i + ξ−i )

subject to f(xi)− yi ≤ ε+ ξ+i ,

yi − f(xi) ≤ ε+ ξ−i , and

ξ+i ≥ 0, ξ−i ≥ 0, i = 1, . . . ,m.

This formulation uses l2 regularization in the case of non-
linearly separable datasets and outliers, where λ is the regu-
larization parameter. A radial basis kernel function is used.

4. RESULTS AND DISCUSSION

This section describes data collection, experimental evalua-
tion, and findings.

4.1. Data Collection and Experimental Evaluation

The data consist of single-scene images taken in Beijing and
Shanghai and their ground truth pollutant concentrations. The
images were taken with the same camera location and angle.
The Beijing dataset consists of 328 images taken by Yi Zou
in 2014 at the Beijing Television Tower [21]. Since the origi-
nal dataset had varying image sizes, we resize each image in
Beijing to 600 by 800. The Shanghai dataset consists of 1,890
images taken from May to December in 2014 at various times
and were captured at the Oriental Pearl Tower [22]. We use
the PM2.5, PM10, and NO2 data provided by sensor stations
within the cities as ground truth [4] [23]. The units for PM2.5
and PM10 are µg/m3 and for NO2 are parts per billion (ppb).

The SVR model uses 6n2 features from β values eval-
uated with two-fold cross validation. The regularization pa-
rameter (λ) value for Beijing is 400 and for Shanghai is 200.

Fig. 1. RMSE for absorption and color (Beijing).1

Fig. 2. RMSE for absorption and color (Shanghai).1

The two evaluation metrics used are the R2 coefficient of de-
termination and the root mean squared error (RMSE) between
the estimated and ground truth pollutant concentration.

4.2. Effect of Absorption and Color Properties

We evaluate the impact of absorption and color-dependent
light attenuation. We use the 6×6 grid size for Beijing and
the 8×8 grid size for Shanghai. When absorption is neglected,
βsc is still determined using gradient descent for all colors
(c) in Eq. (1) and (2). We also consider neglecting color-
dependent properties and find βs and βa using gradient de-
scent on a grayscale version of the problem. As shown in Fig.
1 and 2, considering each property generally improves results.
Wavelength-dependent scattering and absorption properties
can enable analysis of multi-pollutant systems and improve
estimation accuracy.

4.3. Effect of Grid Resolution

We evaluate the effect of using multiple grid elements to
model light attenuation variation. For the Beijing dataset, the
optimal grid size for greatest prediction accuracy of PM2.5

1Units for PM2.5 and PM10 are µg/m3 and for NO2 is parts per billion.



Fig. 3. RMSE for various grid resolutions (Beijing).1

Fig. 4. RMSE for various grid resolutions (Shanghai).1

and PM10 is 6×6, and 10×10 leads to the best accuracy for
NO2, as shown in Fig. 3. The accuracies for the 8×8 and
10×10 grids are worse than that of 6×6 for PM2.5 and PM10.
For NO2, the RMSE keeps decreasing as grid size increases to
10×10, but only slightly from 8×8. For the Shanghai dataset,
shown in Fig. 4, the RMSE keeps decreasing as the grid size
increases to 10×10. Obtaining β values for an increasing
number of grid elements initially rapidly increases accuracy
and then levels off. A simple approach to selecting grid reso-
lution would be to use 10×10 for all pollutants, which always
enabled accuracy near that of the optimal resolution.

4.4. Discussion

We compare the performance of the proposed approach with
the best known existing techniques for estimating air quality
via images in Table 2. We use feature selection of coefficients
to increase accuracy, eliminating features that increase the
root mean square error. We also evaluate our technique with
additional weather features, incorporating humidity, tempera-
ture, pressure, and wind speed, only available for the Shang-
hai dataset. For the proposed approach, a grid resolution of
10 × 10 is used, although it would be possible to increase

Table 2. Comparison of Results with Other Research

Beijing
PM2.5

(µg/m3)
PM10

(µg/m3)
NO2

(ppb)

Proposed RMSE 27.53 56.67 24.54
r2 0.881 0.525 0.393

Liu et al. RMSE 38.28 62.51 25.88
r2 0.70 0.462 0.328

Li et al. RMSE 50.67 65.19 29.88
r2 0.563 0.349 0.070

Improvement % 28.08 9.34 5.18
Shanghai PM2.5 PM10 NO2

Proposed
w.o. Weather

RMSE 8.68 28.00 11.67
r2 0.917 0.779 0.750

Proposed
w. Weather

RMSE 8.32 27.18 11.52
r2 0.924 0.794 0.757

Liu et al. RMSE 13.65 35.46 15.83
r2 0.76 0.640 0.548

Li et al. RMSE 25.66 52.94 19.41
r2 0.260 0.208 0.302

Improvement % 39.05 23.35 27.23

accuracy by tuning grid resolution based on location and pol-
lutant of interest (i.e. these results do not depend on tuning
grid resolution). The current approach outperforms Liu et al.
[5] and Li et al. [6] by a mean of 22% for all three pollutants.
An author of Li et al. [6] indicated that their code is no longer
available, so we reimplemented the algorithm described in the
paper. A portion of the code from Liu et al. [5] was available,
but it was necessary to reimplement other portions.

Various factors influenced prediction accuracy. The dis-
tance between the air quality sensors and image sensors is
greater than 25 km. All three pollutants may have high spatial
and temporal variation so the large distance might introduce
error in the ground truth data, i.e., it is possible that the re-
ported error is higher than the actual error.

5. CONCLUSION

We have shown that using color-dependent features of scat-
tering and absorption enables concurrent estimation of mul-
tiple pollutants, namely PM2.5, PM10, and NO2. In addition,
we use the position-dependent properties of light attenuation
within images to improve prediction accuracy by accounting
for nonuniform pollution distribution.
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