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Objective

 Proposing a fast volumetric single image super-resolution

(SISR) technique with a semi-blind estimation of the Point

Spread Function (PSF).

The SISR problem

Image estimation

Image degradation: the LR image (𝐘) is a down-sampled

(𝐷, by factor r) and blurred (𝐻) HR image (𝐗) with some

additive white noise 𝐍. Using CPD for 𝐗 it is

𝐘 = 𝐷1𝐻1𝑈
1, 𝐷2𝐻2𝑈

2, 𝐷3𝐻3𝑈
3 + 𝐍 (2)

The non-convex minimization problem is then

min
ഥ𝑈,ഥ𝜎

𝐘 − 𝐷1𝐻1 𝜎1 𝑈1, 𝐷2𝐻2 𝜎2 𝑈2, 𝐷3𝐻3 𝜎3 𝑈3
𝐹
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 𝐘 is unfolded, ⨀ is the Kathri-Rao product

 Solution: pseudoinversion with Tikhonov regularization [2]

PSF estimation

Tensor factorization

Any tensor can be written as the sum of 𝐹 simple tensors
(the outer product of 1D arrays)

𝑿 = σ𝑓=1
𝐹 𝑈1 : , 𝑓 ∘ 𝑈2 : , 𝑓 ∘ 𝑈3(: , 𝑓) = 𝑈1, 𝑈2, 𝑈3 , (1)

where 𝑈1, 𝑈2, 𝑈3 are sets of the 1D arrays. When 𝐹 is minimal,

the decomposition (CPD) is unique under mild conditions. [1]

The algorithm

Results

Conclusion
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𝐘 − ℱ−1 ℱ෨ℎ ത𝜎 ⋅ ℱ𝐗
𝐹

2
+ 𝑖( ത𝜎) (5)

 blurring can be written as ℱ−1 ℱ෨ℎ ⋅ ℱ𝐗 , where ℎ is the

zero-padded, circularly shifted Gaussian kernel

 ത𝜎 = {𝜎1, 𝜎2, 𝜎3} are assumed to be in predefined intervals ത𝑎,

characterized by the indicator function 𝑖( ത𝜎)

 the proximal function of (5) can be solved with gradient

descent [3]

 Testing on dental CT

volumes against a

low-rank total vari-

ation (LRTV) method

[4] combined with

our PSF-optimization

 Quantitative results:

Input: 𝐘, 𝑟, 𝐹, ത𝑎, 𝜖, 𝑁,𝑀
1) for i = 0:N do

2) 𝐻1, 𝐻2, 𝐻3 ← ത𝜎
3) for j = 0:M do

4) update 𝑈1, 𝑈2, 𝑈3 sequentially using (4)

5) X ← ഥ𝑈

6) while residual > 𝜖
7) update ത𝜎 using (5)

8) Output: X, the estimated HR image

Sim. Exp.

P
S

N
R

LR-HR 22 dB 19 dB

LRTV 24 dB 26 dB

TF-SSIR 27 dB 30 dB

T
im

e LRTV 9087 s 11832s

TF-SISR 298 s 354 s

 processing the 3D volumes in less than 5 min

 image quality is at least as good as the state of the art


