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Context:

e Crowd density estimation is a challenging problem due to phenomena such as strong occlusion and visual homogeneity

e Recent deep methods are mostly based on the estimation of a density map whose integral over a region provides the number of people within it
e The estimator evaluation is performed at image scale: compensation between overestimating and underestimating the density in ditferent areas

e Absence of an uncertainty range provided along with the scalar density
Our objective:

* We use the Belief Function Theory in order to provide uncertainty bounds to different categories of crowd density estimators.

* Our method allows us to:
— Compare the multi-scale performance of the estimators

— Characterize their reliability for crowd monitoring applications requiring varying degrees of prudence

EVIDENTIAL CNN-ENSEMBLE

FE+LFE network:

e Fully convolutional encoder-decoder structure

e Front End (FE) module with increasing dilation factors to consider larger context around
small objects

e [ocal Feature Extractor (LFE) module with decreasing dilation factors to enforce the spatial
consistency of the output [Ham+18]

e BatchNorm + ReLU activation functions

e ReLU after the last layer: zero-threshold effect with beneficial effects on backpropagation

Layers - part 1 Layers - part 2
FE | Conv3 X 3, FF =16,D =1 LFE | Conv3 X 3, F =64, D = 2
Conv3d x 3, F =32,D =1 Conv3d X 3, F =64, D = 2
Conv3 X 3, F =32,D =2 Conv3d X 3, F =64,D =1
Conv3d X 3, F =64, D = 2 Conv3d X 3, F=64,D =1
Conv3d X 3, F =64, D = 3 Convl X1, F =1, D=1

Building a CNN-ensemble:
* We derive a CNN-ensemble relying on MC-dropout [GG16], obtaining T’ different realization
maps .4, ..., My
e Traditional methods interpret the mean map .#,, as the final prediction map and the stan-
dard deviation map .#, as an estimate of the predictive uncertainty
* We instead rely on Beliet Function Theory
Belief Function Theory (BFT):
e BFT extends probabilistic approaches by modeling imprecision in addition to uncertainty
o Larger hypotheses set: 2° = {0, H, H,{H,H}}, H="Head” and H="Not Head”
e Basic Belief Assignment (BBA): function m s.t. Y 400 m(A) =1,VA € 29, m(A) € [0,1]
Modeling imprecision with BFT:
* We exploit the T realizations obtained through MC-dropout
* We associate a BBA map to every realization ¢, i.e. a 4-layer images where each layer corre-
sponds to the mass value of any hypothesis in {}, H, H,0}

e Bayesian BBA map associated to each realization t, with ¢t = 1,... 7" MB(H) = M, and
MB(H) =1— .4,
e Pixel-wise tailored discounting of each BBA on the basis of its reliability:
— Vt, we compute a discounting coefficient map I' {7t} xep such that a different
coefficient v« ; is associated to every pixel of each source:

I, =a (1 - (\/Zt — median ({j/}?) |>>

— We derive the discounted BBA maps for every source ¢ applying I';
e Conjunctive combination rule to combine the discounted BBA maps into a single output
BBA map
- M(O): ignorance map (lack of sufficient information during training to perform a reli-
able prediction)
- M(0): conflict map (higher values for pixels whose prediction completely disagrees
through the various realizations)
e Decision through belief functions: VA € {H, H},

— Final probabilistic decision: BetPx(A) = 1—mi 0 (mX(A) + m"T@))
— Belief (lower bound): Belx(A) = 1= @y (mx(4))
— Plausibility (upper bound): Pix(A) = 1_75}{ 0 (mx(A) +mx(0))

DENSITY UNCERTAINTY FOR BOUNDING PEDESTRIAN COUNT

EXPERIMENTS AND RESULTS

Multiscale evaluation strategy:
For each considered scale S we compute indicators based on all squared subdomains S € §;, by

using the derived upper and lower density bounds s(.5), 5(.5):

s(S) =w» Belx(H) and §(S)=w» Ply(H)

xeS xeS
e Prediction Error Probability (PEP):

PEP; = ‘{S e Silg(9) € [§(S),§(S)]}‘/I5il

® Relative Imprecision (RI) interval:

RI = (3 (5(5) = s(5))/9()) /IS

SeS;

where ¢(5) is the ground-truth count over S

CONCLUSION

Proposed evaluation method for density estimators:

relative imprecision interval, €
(Rl interval)

_’ vee Different points on the same row
Different discounting coefficients o correspond to different scales
correspond to different relative ~ — o0
imprecision (Rl) intervals —— TY
0 1

prediction error probability, pP,,{PEP)

Comparison of different density estimators:
* CNN-ensemble derived using MC-dropout with 7" = 10
e Comparison of the proposed FE+LFE network with respect to:
— A different network (U-Net)
— The same network trained on less data
— A completely different classifier (SVM-ensemble built iteratively by training SVMs with
different descriptors through active learning [VAL19])
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FE+LFE (trained on less data)
Visual example:

For given input data and ground truth annotations, results of the density estimation map along
with the estimated uncertainty bounds:

SVM [VAL19]

BetP(H) map, s(S) =12.01 M(©) map, 5(5) — s(S) = 3.2
s(S))/g(S) = 0.26, — in S there are 12.01 £+ 13% heads, i.e. s(5) €

Image patch S, g(S) = 12.3

e RI interval: (5(S5)
10.4, 13.6]
* Jgnorance is particularly high on:
— Head edges
— Heads with lower gradient on the borders and strong clutter
— Circularly-shaped areas (shoulders or round dark blobs) which are similar to heads

* We proposed a strategy for associating an uncertainty interval to crowd density estimation using BFT
* We proposed a new evaluation method taking into account the output uncertainty at multiple scales
e Our work opens a promising avenue for crowd safety applications which account for estimation uncertainty during planning and monitoring
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