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CONTEXT AND OBJECTIVES
Context:
• Crowd density estimation is a challenging problem due to phenomena such as strong occlusion and visual homogeneity
• Recent deep methods are mostly based on the estimation of a density map whose integral over a region provides the number of people within it
• The estimator evaluation is performed at image scale: compensation between overestimating and underestimating the density in different areas
• Absence of an uncertainty range provided along with the scalar density
Our objective:
• We use the Belief Function Theory in order to provide uncertainty bounds to different categories of crowd density estimators.
• Our method allows us to:

– Compare the multi-scale performance of the estimators
– Characterize their reliability for crowd monitoring applications requiring varying degrees of prudence

EVIDENTIAL CNN-ENSEMBLE
FE+LFE network:

• Fully convolutional encoder-decoder structure
• Front End (FE) module with increasing dilation factors to consider larger context around

small objects
• Local Feature Extractor (LFE) module with decreasing dilation factors to enforce the spatial

consistency of the output [Ham+18]
• BatchNorm + ReLU activation functions
• ReLU after the last layer: zero-threshold effect with beneficial effects on backpropagation

Building a CNN-ensemble:
• We derive a CNN-ensemble relying on MC-dropout [GG16], obtaining T different realization

maps M̂1, . . . , M̂T

• Traditional methods interpret the mean map Mµ as the final prediction map and the stan-
dard deviation map Mσ as an estimate of the predictive uncertainty

• We instead rely on Belief Function Theory
Belief Function Theory (BFT):

• BFT extends probabilistic approaches by modeling imprecision in addition to uncertainty
• Larger hypotheses set: 2Θ =

{
∅, H, H̄,

{
H, H̄

}}
, H=“Head” and H̄=“Not Head”

• Basic Belief Assignment (BBA): function m s.t.
∑
A∈2Θ m(A) = 1, ∀A ∈ 2Θ, m(A) ∈ [0, 1]

Modeling imprecision with BFT:
• We exploit the T realizations obtained through MC-dropout
• We associate a BBA map to every realization t, i.e. a 4-layer images where each layer corre-

sponds to the mass value of any hypothesis in
{
∅, H, H̄,Θ

}
• Bayesian BBA map associated to each realization t, with t = 1, . . . , T : MBt (H) = M̂t, and
MBt (H̄) = 1− M̂t

• Pixel-wise tailored discounting of each BBA on the basis of its reliability:
– ∀t, we compute a discounting coefficient map Γt : {γx,t}x∈P such that a different

coefficient γx,t is associated to every pixel of each source:

Γt = α

(
1−

(
|M̂t −median

({
M̂
}T

1

)
|
))

– We derive the discounted BBA maps for every source t applying Γt
• Conjunctive combination rule to combine the discounted BBA maps into a single output

BBA map
– M(Θ): ignorance map (lack of sufficient information during training to perform a reli-

able prediction)
– M(∅): conflict map (higher values for pixels whose prediction completely disagrees

through the various realizations)
• Decision through belief functions: ∀A ∈

{
H, H̄

}
,

– Final probabilistic decision: BetPx(A) = 1
1−mx(∅)

(
mx(A) + mx(Θ)

2

)
– Belief (lower bound): Belx(A) = 1

1−mx(∅) (mx(A))

– Plausibility (upper bound): Plx(A) = 1
1−mx(∅) (mx(A) +mx(Θ))

DENSITY UNCERTAINTY FOR BOUNDING PEDESTRIAN COUNT
Multiscale evaluation strategy:
For each considered scale S we compute indicators based on all squared subdomains S ∈ Si, by
using the derived upper and lower density bounds s

¯
(S), s̄(S):

s
¯
(S) = w

∑
x∈S

Belx(H) and s̄(S) = w
∑
x∈S

Plx(H)

• Prediction Error Probability (PEP):

PEP i =
∣∣∣{S ∈ Si|g(S) ∈ [s

¯
(S), s̄(S)]}

∣∣∣/|Si|
• Relative Imprecision (RI) interval:

RIi =
( ∑
S∈Si

(s̄(S)− s
¯
(S))/g(S)

)
/|Si|

where g(S) is the ground-truth count over S

EXPERIMENTS AND RESULTS
Proposed evaluation method for density estimators:

Comparison of different density estimators:
• CNN-ensemble derived using MC-dropout with T = 10
• Comparison of the proposed FE+LFE network with respect to:

– A different network (U-Net)
– The same network trained on less data
– A completely different classifier (SVM-ensemble built iteratively by training SVMs with

different descriptors through active learning [VAL19])
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FE+LFE
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U-Net
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FE+LFE (trained on less data)
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SVM [VAL19]
Visual example:
For given input data and ground truth annotations, results of the density estimation map along
with the estimated uncertainty bounds:

Image patch S, g(S) = 12.3 BetP (H) map, s(S) = 12.01 M(Θ) map, s̄(S)− s
¯
(S) = 3.2

• RI interval: (s̄(S) − s
¯
(S))/g(S) = 0.26, → in S there are 12.01 ± 13% heads, i.e. s(S) ∈

[10.4, 13.6]
• Ignorance is particularly high on:

– Head edges
– Heads with lower gradient on the borders and strong clutter
– Circularly-shaped areas (shoulders or round dark blobs) which are similar to heads

CONCLUSION
• We proposed a strategy for associating an uncertainty interval to crowd density estimation using BFT
• We proposed a new evaluation method taking into account the output uncertainty at multiple scales
• Our work opens a promising avenue for crowd safety applications which account for estimation uncertainty during planning and monitoring
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