Two-stage Unsupervised Learning Method for Affine and Deformable Registration I Colored Two-Dongdong Gu, Guocai Liu, Juanxiu Tian, Qi Zhan Department of Electrical and Information Engineering, Hunan University, China

Introduction

Image registration aims to establish spatial correspondences between a pair of images. The process is typically formulated as an optimization problem which seeks spatial transformation φ by maximizing similarity of the fixed image F and moving image M.

 $\operatorname{argmin}\Re(F, M, \varphi) = \operatorname{argmin}\left(Sim(F, M(\varphi)) + \gamma Reg(\varphi)\right)$ Image similarity

Our goal: learn the global and local spatial transformation parameters in an unsupervised CNN model.

Problems and Solutions

- Iterative optimization methods are computationally expensive and time consuming. Registration performance is sensitive and requires user interaction to tune parameters.
- We model registration pipelines as an optimizable function parameterized by deep network weights which are learned in the training period.
- Preparing the supervised information for medical image registration is time consuming and requires specialized knowledge. We proposed a two-stage unsupervised learning method to find the global displacement map and local deformation field. The training does not need anatomical labels or ground-truth deformations fields. The fixed image is not restricted to a template image. The preprocess step does not need aligning images

Approach

In the first stage, we learn a global image-wise affine map θ by a ulletdeep network. In the second stage, we learn a local voxel-wise [deformation vector field φ by an encoder-decoder architecture.

Regularization

Loss Functions

The first stage measures NCC of the whole fixed image F and the moving image *M* to capture global information:

$$L_{global}(F, M, \theta) = -Ls_{im}(F, M(\theta))$$

=
$$\frac{\left(\sum_{x_{i\in\Omega}} (I_F(x_i) - \overline{I}_F) (I_{M_{\theta}}(x_i) - \overline{I}_{M_{\theta}})\right)^2}{\sum_{x_{i\in\Omega}} (I_F(x_i) - \overline{I}_F)^2 \sum_{x_i\in\Omega} (I_{M_{\theta}}(x_i) - \overline{I}_{M_{\theta}})^2 + 1e^{-5}}$$

In the second stage, loss function is defined as local NCC in addition with a regularization term (L_2 norm of φ on its gradients): $L_{local}(F, M_{\theta}, \varphi) = -LS_{im}(F, M_{\theta}(\varphi))$

 $-\sum_{k\in\Omega}\frac{\left(\sum_{x_{i\in\Omega^{k}}}(I_{F}(x_{i})-\bar{I}_{Fk})\left(I_{M_{\theta}(\varphi)}\right)\right)}{\sum_{x_{i\in\Omega^{k}}}(I_{F}(x_{i})-\bar{I}_{Fk})\sum_{x_{i}}(I_{M_{\theta}(\varphi)}(x_{i})-\bar{I}_{Fk})}\right)}$

$$+ \gamma L_{r(\varphi)}$$

$$\frac{(x_i) - \overline{I}_{M_{\theta(\varphi)}k}}{(x_i) - \overline{I}_{M_{\theta(\varphi)}k}} + 1e^{-5} + \gamma \sum_{k \in \Omega} \|\nabla \varphi(k)\|^2$$

We used four public T1 weighted 3D brain MR images datasets: LPBA40, IBSR18, CUMC12 and MGH10, with 58-22 patientlevel splits for training and testing. Mean DSCs (%) of 4 datasets

Dataset	y the two-st Original		Registered	
LPBA40	54.5	61.4	70.5	
IBSR18	46.1	51.4	65.1	
CUMC12	31.3	32.8	46.5	
MGH10	40.6	41.4	43.9	

Comparison with state-of-the-art methods (mean DSCs and standard deviations)

Dataset	Our	Affine	BSpline	Fsf_	SyN	Voxel
	method			Demons		Morph
LPBA40	0.705	0.644	0.683	0.699	0.724	0.659
	± 0.099	± 0.101	± 0.088	± 0.101	± 0.086	±0.127
IBSR18	0.651	0.493	0.498	0.677	0.695	0.658
	±0.232	±0.227	±0.221	± 0.214	± 0.228	±0.233
CUMC12	0.465	0.382	0.436	0.476	0.507	0.446
	± 0.206	± 0.185	± 0.185	± 0.206	±0.196	±0.210
MGH10	0.439	0.402	0.399	0.406	0.236	0.436
	± 0.185	±0.176	±0.169	± 0.180	±0.178	± 0.184

The proposed approach outperforms several state-of-the-art methods in terms of accuracy and efficiency. It achieves promising results in volume overlap values and errors between fixed labels and warped moving labels.

The two-stage unsupervised CNN architecture can speed up 3D medical image registration pipelines. Anatomical labels or ground-truth deformation fields are not required. It can capture the global map and local deformation vector field. It can be tailored to different datasets without iteration and tuning parameters.

Experimental Results

Experiment results of MGH10 dataset

(b)Fixed image

(c)Registered image

Conclusions