2019

INTRODUCTION

- In the recent decade, the performance of hand gesture recognition has been significantly improved. However, there is still a non-negligible gap between lab experiments and real applications. Therefore, every 1% of improvement is highly desired.
- In this paper, we propose a three-level scheme to utilize the temporal interframe pattern on the recognition of both static and dynamic hand gestures.
- A dynamic hand gesture of finger movements can be considered as a **temporal sequence of static hand gestures**.
- The static hand gestures must also have temporal patterns, because a human would not express a static hand gesture out of context. Therefore we are inspired to exploit the temporal **patterns** to correct the error in the recognition of **static hand** gestures.

TEMPORAL PATTERN ANALYSIS

- The error in the recognition would cause the labeled hand gesture sequence to show **different temporal patterns** from the correct instances.
- However, a human user would not change the hand gesture unreasonably.
- The accuracy will be improved by the proper analysis of the temporal patterns of the consecutive frames.

A real sequence when the hand gesture changed from "point" to "grab":

A faulty sequence when a finger was not detected due to some error:

(point)

(grab)

TEMPORAL INTERFRAME PATTERN ANALYSIS FOR STATIC AND DYNAMIC HAND GESTURE RECOGNITION Kaoning Hu¹, Lijun Yin², Tianyang Wang³ ¹ Texas A&M University-Commerce, ² SUNY Binghamton, ³ Austin Peay State University

A SECOND-LEVEL CLASSIFIER

- If we input the label of the hand gesture of one frame and the gestures.
- the mistakes.

A THIRD-LEVEL CLASSIFIER

- or a video sequence of several static hand gestures.
- of the hand suddenly change.
- recognition.

labels of its previous frames to a classifier as the training data, the classifier will learn the different patterns between incorrectly labeled frames and the real transition of the hand

The first classifier C_1 gives a class label to every frame of the image sequence, whereas the second classifier C_2 uses the labels generated by the first classifier to detect and correct

A temporal sequence may be a single dynamic hand gesture,

We only trigger a classifier for dynamic hand gesture when the class label of static hand gesture of the current frame is different from the previous frame, or when the coordinates

As demonstrated by Hu and Yin, using a sequence of labels as the input data for dynamic hand gesture recognition worked better than using the features directly extracted from the original image sequence. Therefore, the temporal sequence of labels generated by C_2 is used for dynamic hand gesture

- best performance.

EVALUATION

- people.
- to **98.1%. (+6.2%)**
- 95.8%.

Any classifier that is relatively robust can be used as C_1 .

To reduce the detection latency, the class label of the current frame and its 4 previous frames as the input of C₂.

Bayesian network is used as the classifier of C₂, and has the

Hidden Markov Model (HMM) classifier is used as C_3 (classifier for dynamic hand gesture).

We have a dataset with 16 static hand gestures and 7 dynamic hand gestures. 3438 samples in total from 17

Without C_2 , the accuracy of C_1 is 91.9%.

C₂ improves the accuracy of **static hand gesture recognition**

97.5% of the dynamic hand gestures were distinguished from static hand gestures.

The HMM classifier C₃ achieves an accuracy of 98.3% across the seven dynamic hand gestures. This makes the overall accuracy of dynamic hand gesture recognition reach to