Quality Assessment of Images Undergoing Multiple Distortion Stages

{shahrukh.athar, abdul.rehman, zhou.wang}@uwaterloo.ca, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1

Introduction

• Objective Image Quality Assessment (IQA) methods are usually classified as full-reference (FR), reduced-reference (RR) and no-reference (NR) depending upon accessibility to pristine reference content (Figure 1).

Figure 1: General framework of FR, RR and NR IQA.

- Typically IQA methods are tested and at times trained on image databases of different distortion types, but a single distortion stage.
- This is in clear contrast to real-world visual content distribution scenarios, where visual content may undergo multiple stages of distortions (Figure 2).

Figure 2: Quality tracking in visual content distribution with multiple stages of distortions.

- Objectives:
- Understand the impact of multiple distortion stages on the performance of contemporary IQA models.
- Investigate the potential of performing IQA at middle distortion stages.

2. P. Ye, J. Kumar, L. Kang and D. Doermann, "Unsupervised feature learning framework for no-reference image quality assessment," in 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2012, pp. 1098-1105.

Shahrukh Athar, Abdul Rehman and Zhou Wang

Performance Variations of IQA Models at Multiple Stages of Distortions

• We created the *IVC-MD5* database to analyze the performance of state-of-theart NR IQA algorithms in multiple distortion scenarios (Table 1).

Table 1: Composition of the IVC-MD5 Database.

Number of P	ristine	Images	s in Database	70
Distortion	Disto	ortion C	Combination	Number
Stage	1	2	3	of Images
1	JPEG	Noise	Noise	210
2	JPEG	JPEG	JPEG2000	630
3	JPEG	JPEG	JPEG	1890
4	JPEG	JPEG	JPEG2000	5670
5	JPEG	JPEG	JPEG	17010

References

- Representative NR IQA algorithms that were tested include BRISQUE [1], CORNIA [2], LPSI [3], NIQE [4] and WANG02 [5].
- These NR IQA algorithms are tested and/or trained on image databases with a single distortion stage [6, 7, 8].
- FR IQA algorithm MS-SSIM [9] was used for benchmarking purposes.

(a) Distortion Combination-1

Figure 3: Performance of NR IQA algorithms for different distortion combinations of the IVC-MD5 database.

- Conclusions:
- -NR IQA algorithm performance degrades consistently with distortion stages.
- Performance degradation is most severe in case of mixed distortion types.

• We created a large-scale image dataset called the *IVC-MD-Te* database, that contains images which have undergone two distortion stages (Table 2).

Table 2: Composition of the IVC-MD-Te Database.

Number of P	ristine Images in Databa		
Distortion	Disto	rtion C	Combination
Stage	1	2	3
1	JPEG	Noise	Noise
2	JPEG	JPEG	JPEG2000

- Benchmarking was again done by using MS-SSIM [9].
- Three scenarios can be envisioned for mid-stage IQA.

(c) Distortion Combination-3

IQA at Mid-Stage

Figure 4: Performance of NR IQA algorithms at individual Stage-1 distortion levels of the IVC-MD-Te database.

- to image D_n .
- -Only NR algorithms are applicable.
- distortion types (Table 3).
- distortion levels (Figure 4).
- Scenario-2: Access is available to image D_{n-1} in addition to D_n (example: at transcoder input/output). We refer to image D_{n-1} as a *degraded-reference*. -FR algorithms can be used to evaluate the quality of D_n relative to D_{n-1} . – MS-SSIM [9] was used to implement this scenario.

- -*Scenario-2* outperforms *Scenario-1* (Table 4).
- Scenario-3: In addition to images D_n and D_{n-1} , prior knowledge is also available about the quality of image D_{n-1} relative to the *pristine-reference* image.
- Using the quality scores through the delivery chain, an SVR based model was used to predict the quality of image D_n .
- -*Scenario-3* far outperforms *Scenarios-1* and 2 (Table 5).

Table 5. Perioni	nance evaluation	on of <i>Sce</i>	enario-1
Distortion	NP Mothod	PI CC	SPCC
Combination			SACC
	BRISQUE	0.7238	0.7163
	CORNIA	0.7131	0.7170
JPEG-JPEG	LPSI	0.6800	0.6719
	NIQE	0.5795	0.5605
	WANG02	0.7444	0.7399
Noise IPEG	BRISQUE	0.5770	0.5599
	CODITA		
Noise_IPEG	CORNIA	0.6263	0.6018
Noise-JPEG	CORNIA LPSI	0.6263 0.4502	0.6018 0.3920
Noise-JPEG	CORNIA LPSI NIQE	0.6263 0.4502 0.4523	0.6018 0.3920 0.4161
Noise-JPEG	CORNIA LPSI NIQE BRISQUE	0.6263 0.45020.45230.5811	 0.6018 0.3920 0.4161 0.5717
Noise-JPEG	CORNIA LPSI NIQE BRISQUE CORNIA	 0.6263 0.4502 0.4523 0.5811 0.6252 	 0.6018 0.3920 0.4161 0.5717 0.6358
Noise-JPEG Noise-JPEG2000	CORNIA LPSI NIQE BRISQUE CORNIA LPSI	 0.6263 0.4502 0.4523 0.5811 0.6252 0.4187 	 0.6018 0.3920 0.4161 0.5717 0.6358 0.3945

- formance with multiple distortion stages.
- tential for *degraded-reference* IQA research.

• Scenario-1: Access is available only to content after Distortion Stage n, i.e.,

– Performance of all NR IQA algorithms is unsatisfactory, especially for mixed

– Performance of NR IQA algorithms is inconsistent across increasing Stage-1

Conclusion

• Traditional FR and NR IQA frameworks and models fail to sustain their per-

• Relaying IQA results along the distortion chain and developing IQA models accordingly leads to substantially improved performance, showing great po-

^{1.} A. Mittal, A. K. Moorthy and A. C. Bovik, "No reference image quality assessment in the spatial domain," IEEE Transactions on Image Processing, vol. 21, no. 12, pp. 4695-4708, 2012.

^{3.} Q. Wu, Z. Wang and H. Li, "A highly efficient method for blind image quality assessment," in 2015 IEEE International Conference on Image Processing (ICIP), IEEE, 2015, pp. 339-343.

^{4.} A. Mittal, R. Soundararajan and A. C. Bovik, "Making a completely blind image quality analyzer," *IEEE Signal* Processing Letters, vol. 20, no. 3, pp. 209-212, 2013.

^{5.} Z. Wang, H. R. Sheikh and A. C. Bovik, "No-reference perceptual quality assessment of JPEG compressed images," in 2002 IEEE International Conference on Image Processing (ICIP), IEEE, 2002, vol. 1, pp. I477-I480. 6. H. R. Sheikh, Z. Wang, L. Cormack and A. C. Bovik, "LIVE image quality assessment database release 2," 2005.

^{7.} E. C. Larson and D. M. Chandler, "Most apparent distortion: full-reference image quality assessment and the role of strategy," Journal of Electronic Imaging, vol. 19, no. 1, pp. 011006(1-21), 2010. 8 N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli and F. Battisti, "TID2008-a database for evalua-

tion of full-reference visual quality assessment metrics," Advances of Modern Radioelectronics, vol. 10, no. 4, pp. 30-45, 2009.

^{9.} Z. Wang, E. P. Simoncelli and A. C Bovik, "Multiscale structural similarity for image quality assessment," in Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers (ASILOMAR), IEEE, 2003, vol. 2, pp. 1398-1402.