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Introduction
•Objective Image Quality Assessment (IQA) methods are usually classified as

full-reference (FR), reduced-reference (RR) and no-reference (NR) depending
upon accessibility to pristine reference content (Figure 1).
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Figure 1: General framework of FR, RR and NR IQA.

•Typically IQA methods are tested and at times trained on image databases of
different distortion types, but a single distortion stage.

•This is in clear contrast to real-world visual content distribution scenarios,
where visual content may undergo multiple stages of distortions (Figure 2).
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Figure 2: Quality tracking in visual content distribution with multiple stages of distortions.

•Objectives:

– Understand the impact of multiple distortion stages on the performance of
contemporary IQA models.

– Investigate the potential of performing IQA at middle distortion stages.

Performance Variations of IQA Models at
Multiple Stages of Distortions

•We created the IVC-MD5 database to analyze the performance of state-of-the-
art NR IQA algorithms in multiple distortion scenarios (Table 1).

Table 1: Composition of the IVC-MD5 Database.

Number of Pristine Images in Database 70
Distortion

Stage
Distortion Combination Number

of Images1 2 3
1 JPEG Noise Noise 210
2 JPEG JPEG JPEG2000 630
3 JPEG JPEG JPEG 1890
4 JPEG JPEG JPEG2000 5670
5 JPEG JPEG JPEG 17010

•Representative NR IQA algorithms that were tested include BRISQUE [1],
CORNIA [2], LPSI [3], NIQE [4] and WANG02 [5].

•These NR IQA algorithms are tested and/or trained on image databases with a
single distortion stage [6, 7, 8].

• FR IQA algorithm MS-SSIM [9] was used for benchmarking purposes.
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(a) Distortion Combination-1
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(b) Distortion Combination-2
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(c) Distortion Combination-3

Figure 3: Performance of NR IQA algorithms for different distortion combinations of the IVC-MD5 database.

•Conclusions:

– NR IQA algorithm performance degrades consistently with distortion stages.
– Performance degradation is most severe in case of mixed distortion types.

IQA at Mid-Stage
•We created a large-scale image dataset called the IVC-MD-Te database, that

contains images which have undergone two distortion stages (Table 2).

Table 2: Composition of the IVC-MD-Te Database.

Number of Pristine Images in Database 3570
Distortion

Stage
Distortion Combination Number

of Images1 2 3
1 JPEG Noise Noise 39270
2 JPEG JPEG JPEG2000 667590

•Benchmarking was again done by using MS-SSIM [9].

•Three scenarios can be envisioned for mid-stage IQA.
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Figure 4: Performance of NR IQA algorithms at individual Stage-1 distortion levels of the IVC-MD-Te database.

• Scenario-1: Access is available only to content after Distortion Stage n, i.e.,
to image Dn.

– Only NR algorithms are applicable.
– Performance of all NR IQA algorithms is unsatisfactory, especially for mixed

distortion types (Table 3).
– Performance of NR IQA algorithms is inconsistent across increasing Stage-1

distortion levels (Figure 4).

• Scenario-2: Access is available to image Dn−1 in addition to Dn (example: at
transcoder input/output). We refer to image Dn−1 as a degraded-reference.

– FR algorithms can be used to evaluate the quality of Dn relative to Dn−1.
– MS-SSIM [9] was used to implement this scenario.
– Scenario-2 outperforms Scenario-1 (Table 4).

• Scenario-3: In addition to images Dn and Dn−1, prior knowledge is also avail-
able about the quality of image Dn−1 relative to the pristine-reference image.

– Using the quality scores through the delivery chain, an SVR based model was
used to predict the quality of image Dn.

– Scenario-3 far outperforms Scenarios-1 and 2 (Table 5).

Table 3: Performance evaluation of Scenario-1.

Distortion
Combination NR Method PLCC SRCC

JPEG-JPEG

BRISQUE 0.7238 0.7163
CORNIA 0.7131 0.7170

LPSI 0.6800 0.6719
NIQE 0.5795 0.5605

WANG02 0.7444 0.7399

Noise-JPEG

BRISQUE 0.5770 0.5599
CORNIA 0.6263 0.6018

LPSI 0.4502 0.3920
NIQE 0.4523 0.4161

Noise-JPEG2000

BRISQUE 0.5811 0.5717
CORNIA 0.6252 0.6358

LPSI 0.4187 0.3945
NIQE 0.5735 0.5674

Table 4: Performance evaluation of Scenario-2.

Distortion Combination PLCC SRCC
JPEG-JPEG 0.8199 0.7443
Noise-JPEG 0.7080 0.6902

Noise-JPEG2000 0.6975 0.6780

Table 5: Performance evaluation of Scenario-3.

Distortion Combination PLCC SRCC
JPEG-JPEG 0.9931 0.9944
Noise-JPEG 0.9554 0.9523

Noise-JPEG2000 0.9408 0.9383

Conclusion
•Traditional FR and NR IQA frameworks and models fail to sustain their per-

formance with multiple distortion stages.

•Relaying IQA results along the distortion chain and developing IQA models
accordingly leads to substantially improved performance, showing great po-
tential for degraded-reference IQA research.
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