SEGMENTATION OF RETINAL ARTERIAL BIFURCATIONS IN 2D ADAPTIVE OPTICS OPHTHALMOSCOPY IMAGES

cole d'ingénieurs du numérique

isep

lyed Trimeche¹, Florence Rossant¹, Isabelle Bloch², Michel Paques³ ¹ ISEP, LISITE, ² LTCI, Télécom Paris Inst. Polytechnique de Paris, ³ CHNO des Quinze-Vingts, CIC 1423

Context - Goals

 $|\mathbf{0}|_{2019}$

RHU TRT cSVD (ANR-16-RHUS-0004) : to study CADASIL syndrome, a disease affecting cerebral small vessels and responsible for strokes and cognitive decline.

PARADIGM: Retinal vessels are related to cerebral vessels, sharing many structural, functional and pathological features.

ADAPTIVE OPTICS OPHTALMOSCOPY: high resolution imaging modality (~1µm/pix) allowing to visualize microstructures in the retina (www.imagine-eyes.com).

PREVIOUS WORK: arterial wall segmentation of individual branches (AOV) [1].

GOALS: to extend the method to the segmentation of bifurcations in order to estimate accurately the branch diameters at the bifurcation and calculate biomarkers that characterize blood flow. Semi-automatic approach.

1. BIFURCATION SEGMENTATION

MFTHOD

- 1. Manual step where the user defines the three vessel branches involved in the bifurcation by placing points on the axial reflections.
- 2. Automatic segmentation of the 3 branches by AOV [1],
- 3. Automatic segmentation of the bifurcation and diameter estimation.

FIGURE 1 - Initialization of the parametric active contour model

ADAPTIVE PARAMETRIC ACTIVE CONTOUR MODEL

- Lines $V_i^{(0)}$, i = 1,2,3, created from the 3 pairs of curves delineating the lumen.
- Proposed active contour model:

$$E(V(s)) = \int_{0}^{1} -|\nabla I(V_{i}(s))| + \alpha(s)|V_{i}'(s)|^{2} + \varphi(s)|V_{i}(s) - V_{i}^{(0)}(s)|^{2} ds$$
Regularization 1
Regularization 2

Adaptive weighting of two regularization terms in order to take into account: **1**. The bifurcation geometry: $\alpha(s)$ low at the junction point s_0 for acute angles θ .

2. The initial segmentation, reliable outside the bifurcation: $\varphi(s)$ and $\alpha(s)$

 $\alpha_{min}(\theta) = \alpha_{low} + (\alpha_{high} - \alpha_{low}) \frac{1}{1 + \exp(-\gamma(\theta - \theta_{med}))}$

Parameters φ_0 , α_{low} , α_{high} , θ_{med} , γ , tuned on a subset of 5 images.

high far from the bifurcation. $f_p^{(s_0,\delta)} = max\left(\frac{1}{1 + e^{-(s-s_0-\delta)}}, \frac{1}{1 + e^{-(s_0-s-\delta)}}\right)$

$$\varphi(s) = \varphi_0 f_p^{(s_0, o)}(s)$$

 $\alpha(s) = \alpha_{min} + (\alpha_{high} - \alpha_{min}) f_p^{(s_0,\delta)}(s)$

200 300 400 1 s

Profile
$$f_p^{(s_0,\delta)}$$

 $s_0 - \delta s_0 s_0 + \delta s_0$
 $a_{min}(\theta)$

 $\alpha_{min}(\theta_1)$

 $min(\theta_2)$

 $\alpha_{min}(\theta_3)$

2. BIOMARKERS

BIOMARKERS CALCULATED FROM BRANCH DIAMETERS

FIGURE 2 – Diameter estimation

Murray's law [2]: $d_0^3 = d_1^3 + d_2^3$ Junction exponent x: $d_0^x = d_1^x + d_2^x$

Branching exponent:

$$nes = \frac{d_1^2 + d_2^2}{d_0^2} = \frac{1 + \lambda^2}{(1 + \lambda^2)^2 \frac{1}{x}}, \lambda = d_2/d_1$$

Gap to optimal configuration (x = 3):

 $\beta_{dev} = \beta_{optimal} - \beta_{mes}$

3. EXPERIMENTAL RESULTS

DATABASE AND BIOMARKERS ESTIMATION

images acquired from 23 control subjects, 28 diabetic patients and 25 patients with CADASIL.

Br

Analyzing an artery to the 6th bifurcation ($\bigcirc 20\mu m - 90\mu m$).

8Bda 0.00 ± 0.09

 0.00 ± 0.11

 $+0.01 \pm 0.02$

QUANTITATIVE EVALUATION

Manual segmentations of 10 OA images by 3 experts.

 $+0.84 \pm 2.22$

 -0.62 ± 3.98

 -1.18 ± 2.09

intra/inter-expert(s) and software/expert variability:

	Seg/Ref	MSE	$\delta d_{0,1,2}$	$\delta \beta_{dev}$	δx
Ľ	Exp_1/Exp_3	2.65 ± 1.48	$+0.06 \pm 4.51$	-0.04 ± 0.07	-0.44 ± 1.5
	Exp_2/Exp_3	3.25 ± 1.84	$+0.52 \pm 6.15$	0.00 ± 0.18	-0.40 ± 2.5
	$Logiciel/Exp_3$	3.22 ± 1.21	$+2.78 \pm 2.95$	$+0.02\pm0.06$	$+0.11 \pm 0.3$

CONCLUSION AND PERSPECTIVES

- MSE: similar to the inter-experts variability and slightly higher than the intra-expert variability.
- Diameters: consistent with MSE, low over-segmentation.
- Biomarkers: similar accuracy or even better than inter/intra expert(s) accuracy.
- Method: dynamic weighting of an active contour, to cope with the geometry of every bifurcation and keep the initial segmentation where it is reliable.
- Limits : blur in OA images \rightarrow segmentation imprecision \rightarrow inaccuracies in diameter estimates. Sensitivity of biomarkers to diameter imprecision.
- Perspectives: processing of the whole vascular tree, neurovascular coupling.

[1] N. Lermé, F. Rossant, I. Bloch, M. Pagues, E. Koch, and J. Benesty, A fully automatic method for segmenting retinal artery walls in adaptive optics images. Pattern Recognition Letters, 72 :72-81, 2016. [2] C. D. Murray. The physiological principle of minimum work : I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Sciences, 12(3) :207–214, 1926. Contacts : florence.rossant@isep.fr: michel.pagues@gmail.com : isabelle.bloch@telecom-paristech.fr