

ADAPTIVELY TUNING A CONVOLUTIONAL NEURAL NETWORK BY GATING PROCESS FOR IMAGE DENOISING

ICIP 2019

Yoonsik Kim, Jaewoong Soh, Nam Ik Cho

Image Denoising

- Additive White Gaussian Noise model
 - Y = X + V
 - $V \sim N(0, \sigma^2)$

Original image

Noise

Image Denoising

- AWGN denoiser can be applied to the real world
 - Directly or Retrain with real datasets

Zhang, Kai *et al.*, FFDNet: Toward a fast and flexible solution for CNN based image denoising, TIP 2018.

Abdelhamed, Abdelrahman *et al.*, A High-Quality Denoising Dataset for Smartphone Cameras, CVPR2018

Specific Model

Lots of Models

Spatially Invariant

Sharp / Details

Good at Low-level Noisy Image

Blind Model

Single Model

Spatially Variant

Blurry

Effects of Data Augmentation

Specific Model

Lots of Models

Spatially Invariant

Sharp / Details

Good at Low-level Noisy Image

Proposed Model

Single Model

Spatially Variant

Sharp / Details

Good at All Range Noisy Image / Effects of Data Augmentation

Parametric Model

Single Model

Blind Model

Spatially Variant

Blurry

Effects of Data Augmentation

Spatially Variant Noisy Image

Proposed Method

- Adaptively Tuned Denoisng Network (ATDNet)
 - Network *G*: Gate-weight generating network
 - Network F: Baseline CNN denoiser
 - Features maps of F are tuned from noise level by gating process

Proposed Method

- Gating Process in Residual Block
 - $G(\sigma)$ gates the newly updated feature maps $F(Y)_{i,2}^k$

 $F(Y)_{i,out}^k = F(Y)_{i,0}^k + \alpha \tanh(F(Y)_{i,2}^k \circ s(G(\sigma)))$

Notation	Description
$F(Y)_{i,j}^k$	Features of <i>j-th</i> convolution in the <i>i-th</i> resblock
$G(\sigma)$	Output of noise level (σ) using G

Training

- Trained noise level: [10:5:60]
- Training set: BSD 400
- Patch size: 40×40
- The loss function: MSE

$$\mathbf{L}(\Theta) = \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}_i - F(\mathbf{y}_i, \sigma_i; \Theta)\|_2^2.$$

Discussions

- When there is no *G*, or if all the output of *G* is one regardless of its input, then the network is the same as blind denoiser
- $G(\sigma)$ changes almost monotonically as changes σ

Experimental Setup

- Comparison Method
 - BM3D (-F), TNRD (-S), REDNet (-S), DnCNN (-S, -B), FFDNet (-F)
- Baselines
 - EDDN-S: Specifically trained with F
 - EDDN-B: Blindly trained with F

Experiments on static AWGN

					Set 12					
Sigma	BM3D	TNRD	REDNet	DnCNN-S	DnCNN-B	FFDNet	EDDN-S	EDDN-B	ATDNet	ATDNetW
15	32.38	32.50	5	32.86	32.68	32.75	32.93	32.82	32.90	33.02
25	29.95	30.04	2	30.44	30.36	30.43	30.57	30.55	30.57	30.72
30	29.15	-	29.62	29.52	29.53	29.61	29.74	29.74	29.77	29.94
50	26.70	26.78	27.26	27.18	27.21	27.32	27.43	27.29	27.48	27.67
					BSD 6	8				
Sigma	BM3D	TNRD	REDNet	DnCNN-S	DnCNN-B	FFDNet	EDDN-S	EDDN-B	ATDNet	ATDNetW
15	31.07	31.42	<u>u</u>	31.73	31.61	31.63	31.78	31.61	31.77	31.80
25	28.56	28.91		29.23	29.17	29.19	29.31	29.27	29.32	29.38
30	27.75		28.50	28.36	28.35	28.39	28.49	28.47	28.50	28.57
50	25.62	25.96	26.37	26.23	26.23	26.29	26.38	26.19	26.41	26.47
					URBAN	00				
Sigma	BM3D	TNRD	REDNet	DnCNN-S	DnCNN-B	FFDNet	EDDN-S	EDDN-B	ATDNet	ATDNetW
15	31.80	31.40	5	32.19	31.83	31.85	32.31	32.04	32.29	32.82
25	29.03	28.51	2	29.29	29.16	29.18	29.55	29.42	29.56	30.15
30	28.05	(m)	28.27	28.16	28.20	28.25	28.56	28.48	28.62	29.22
50	25.22	24.85	25.54	25.49	25.57	25.68	25.85	25.80	26.00	26.60

Parametric CNN Denoiser

Experiments on untrained noise level

- Trained noise levels are [10:5:60]
- Test on untrained noise levels

Experiments on untrained noise level

- Trained noise levels are [10:5:60]
- Test on untrained noise levels

Extension of ATDNet

- Adding a pixel-wise noise level estimation
- Spatially variant method

Reference: <u>https://github.com/terryoo/ATDNet</u>

Dpt. ECE, INMC, Seoul National University

Uniform noise level results

Estimates of single noise level

σ	Set12	BSD68	Urban100
15	14.92 ± 0.28	14.93 ± 0.31	15.06 ± 0.49
25	24.92 ± 0.28	25.03 ± 0.17	25.08 ± 0.39
30	29.92 ± 0.28	30.06 ± 0.24	30.03 ± 0.41
50	49.17 ± 0.37	49.47 ± 0.61	49.51 ± 0.61

Spatially variant noisy image results

(d) Proposed (32.03 dB)

Spatially variant noisy image results

Dataset	Set12	BSD68	Urban100
FFDNet	29.08	27.88	28.43
Baseline-C	29.11	27.89	29.21
ATDNet	29.43	28.09	29.26
ATDNetW	29.46	28.08	29.52
Baseline-B	28.59	27.58	28.99
ATDNet-EST	29.28	28.01	29.11
ATDNetW-EST	29.32	28.01	29.38

Spatially variant results

(a) Noise level maps

(b) Estimated noise level maps

Old Photo Results

Color AWGN Results

			CBSD68			
Sigma	CFFDNet	CUNLNet	CATDNetW	CDnCNN-B	CATDNetW-EST	
15	33.88	33.87	34.08	33.89	34.08	
25	31.15	31.21	31.48	31.23	31.48	
30	30.21	30.31	30.60	30.32	30.60	
50	27.85	27.96	28.30	27.92	28.30	
			Kodak24			
Sigma	CFFDNet	CUNLNet	CATDNetW	CDnCNN-B	CATDNetW-EST	
15	34.63	34.64	34.99	34.48	35.00	
25	32.08	32.13	32.58	32.03	32.58	
30	31.18	31.28	31.75	31.18	31.71	
50	28.86	28.98	29.49	28.84	29.49	
			McMaster			
Sigma	CFFD Net	CUNLNet	CATDNetW	CDnCNN-B	CATDNetW-EST	
15	34.33	34.66	35.12	33.44	35.09	
25	32.02	32.35	32.87	31.51	32.87	
30	31.00	31.52	32.06	30.78	32.02	
50	28.80	29.18	29.78	28.61	29.74	
			CUrban100			
Sigma	CFFDNet	CUNLNet	CATDNetW	CDnCNN-B	CATDNetW-EST	
15	33.97	33.83	34.56	32.98	34.53	
25	31.50	31.40	32.32	30.81	32.30	
30	30.41	30.53	31.52	29.99	31.48	
50	27.95	28.05	29.21	27.59	29.19	

(e) CATDNetW / 31.27 dB

(f) CATDNetW-EST / 31.23 dB

(g) Ground-Truth

Project Page

- Codes are available
 - <u>https://github.com/terryoo/ATDNet</u>

Thank You Q & A