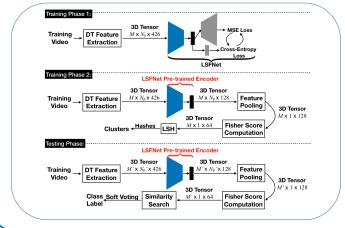
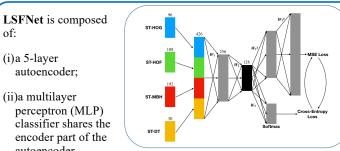


Loss Switching Fusion with Similarity Search for Video Classification

Lei Wang*† Du Q. Huynh† Moussa Reda Mansour*† *iCetana Pty Ltd †The University of Western Australia


Introduction

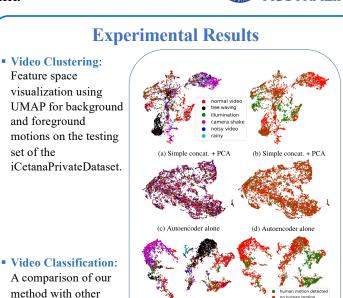

- ♦ We propose a novel video classification system that would benefit the scene understanding task.
- ♦ Our classification problem: classifying background and foreground motions using the same feature representation for outdoor scenes.
- We propose a lightweight Loss Switching Fusion Network (LSFNet) for the fusion of spatiotemporal descriptors and a similarity search scheme with soft voting to boost the classification performance.
- Potential applications: content-based video clustering, video filtering, etc.

Method

≻Two training phases:

- LSFNet is trained using randomly sampled descriptors;
- The pre-trained LSFNet and a feature pooling layer together output a lower-dimensional feature vector.

- autoencoder. > The MSE loss and classification loss of LSFNet are used alternately in each pass of the gradient decent.
- ► Locality Sensitive Hashing (LSH) is used to map features to a hash value.
- >For each test video, similarity search is used to find the most similar feature representations so as to get their corresponding labels.
- Counting and comparing the number of labels retrieved using 'soft voting' to get the confidence values to assign label to each test video.


Datasets and Experimental Settings

≻Two industry datasets:

of:

(i)a 5-layer

- iCetanaPrivateDataset
- · 2700 videos with various length captured in outdoor environments,
- · contains many background motions such as tree waving, camera shaking, rainy, noisy, etc.
- iCetanaEventDataset
- · An extension of iCetanaPrivateDataset
- · 6668 videos captured by multiple cameras located at different train stations, bus stops, etc.
- >Multi-class classification for 6 background motions;
- Binary classification for separating human motions from background motions.

(e) LSFNet fusion

(f) LSFNet fusion

	Background	Foreground
Algorithms	env. motion	human motion
iDT [30]	48.1	66.7
C3D [20] (Sports 1M pre-training) + LinearSVM	74.1	70.4
C3D [20] (finetuned using iCetanaEventDataset)	75.9	77.8
I3D RGB [21](finetuned using iCetanaEventDataset)	77.0	79.9
Fisher score + CCA [†]	81.5	85.2
DT + FV + Fisher score + LSH [‡]	83.8	86.5
LSFNet	83.3	85.2
LSFNet+ Fisher score	85.2	87.0
Our whole system	88.9	90.7

state-of-the-art

techniques.

ical Correlation Analysis (CCA) [3] for the feature fusion.

[‡]Our own pipeline using DT [26] followed by Fisher vector (FV) [37, 38], then Fisher score is used to select the top-50% feature components for LSH.