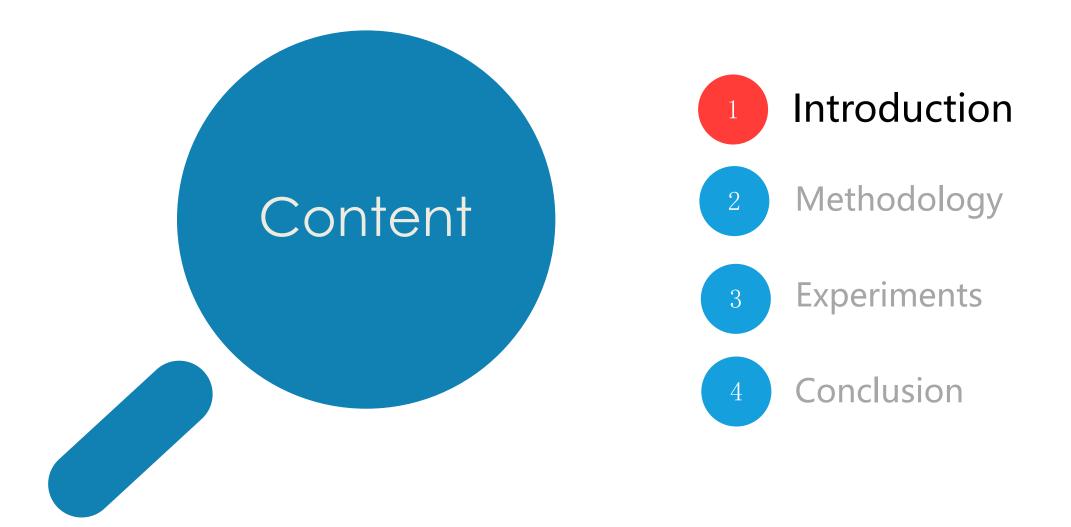
ICIP 2019

"A dual attention dilated residual network for liver lesion classification and localization on CT images " Xiao Chen, Lanfen Lin, Yen-Wei Chen, et al.

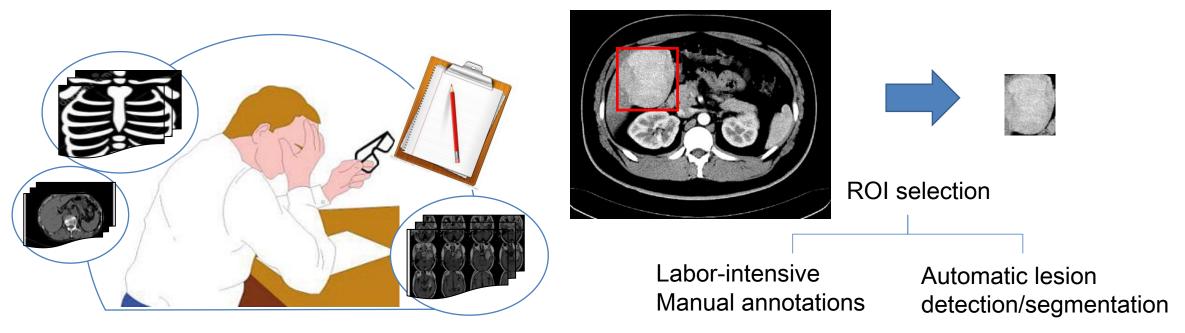
Zhejiang University, Ritsumeikan University, Sir Run Run Shaw Hospital



Introduction Backgrounds

Liver cancer is the second most common cause of cancer-related deaths among men and sixty among women.

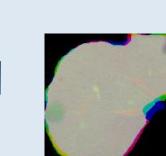
Major concern limits automatic liver lesion classification is that previous methods are conducted on lesion level, which relies heavily on <u>ROI selection process</u>.



To relieve the burden of expensive pixel-level lesions' annotations, we first explored the potential of using the <u>whole liver slice image for liver lesion classification</u> without pre- detection or pre-selection of the ROI.

ART Phase





Previous methods:

- 1. segment liver lesions
- 2. conduct lesion-level classification (ROI-level, patch-level, or both)

Our proposed methods:

- 1. segment whole liver area
- 2. conduct image-level classification (without lesion detection or segmentation)

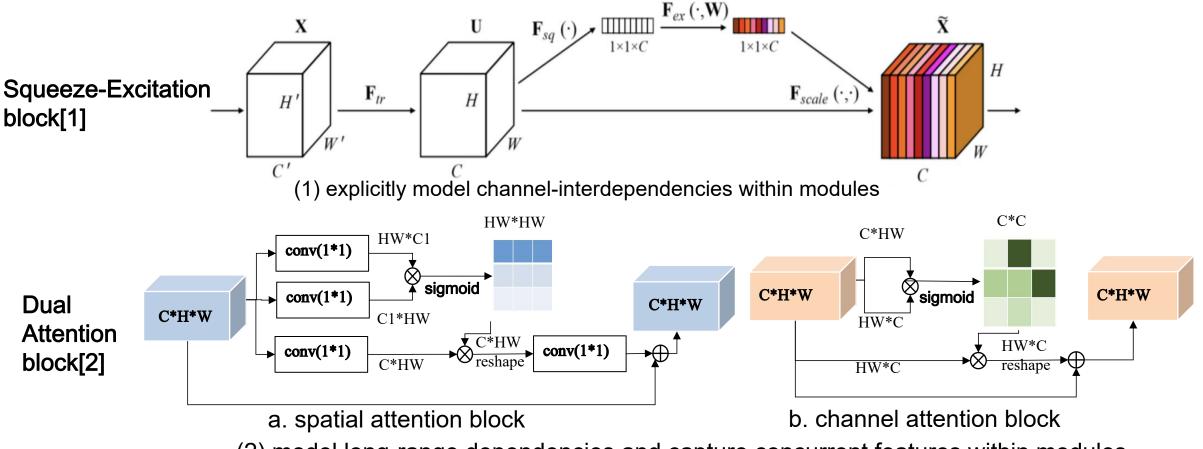
Motivation Contributions

Our proposed DADRN framework no longer relies on lesion annotations and could tackle the lesion classification problem as a one-stage process.

- Our dual-attention mechanism integrates similar features of high-level feature map from a global view, which improves DRN's lesion recognition performance
- The experimental results show that DADRN is comparable to the ROI-level classification model and is superior to other state-of-the-art attention-based classification models in lesion classification task and weakly- supervised lesion localization task.

Motivation Related Work

> Attention mechanism in Computer Vision

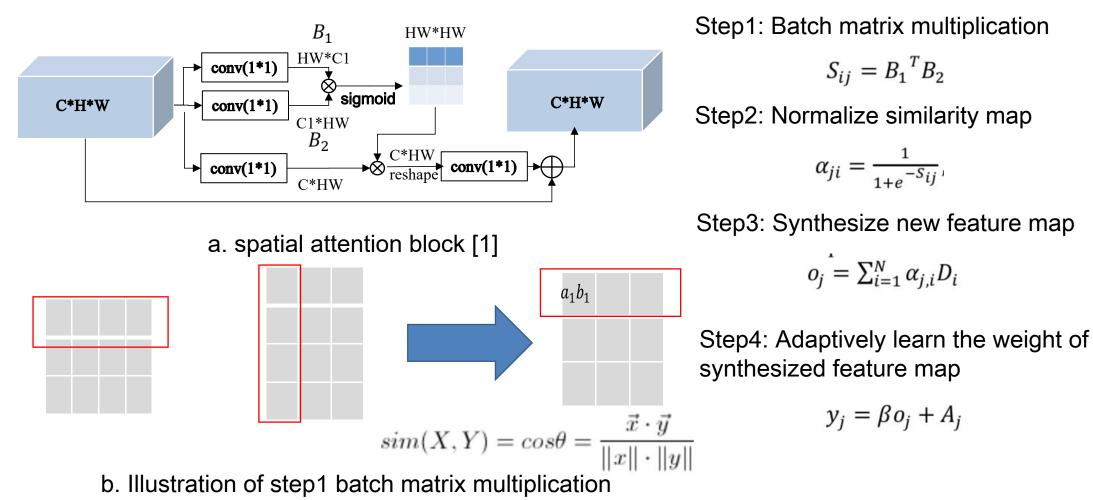


(2) model long-range dependencies and capture concurrent features within modules

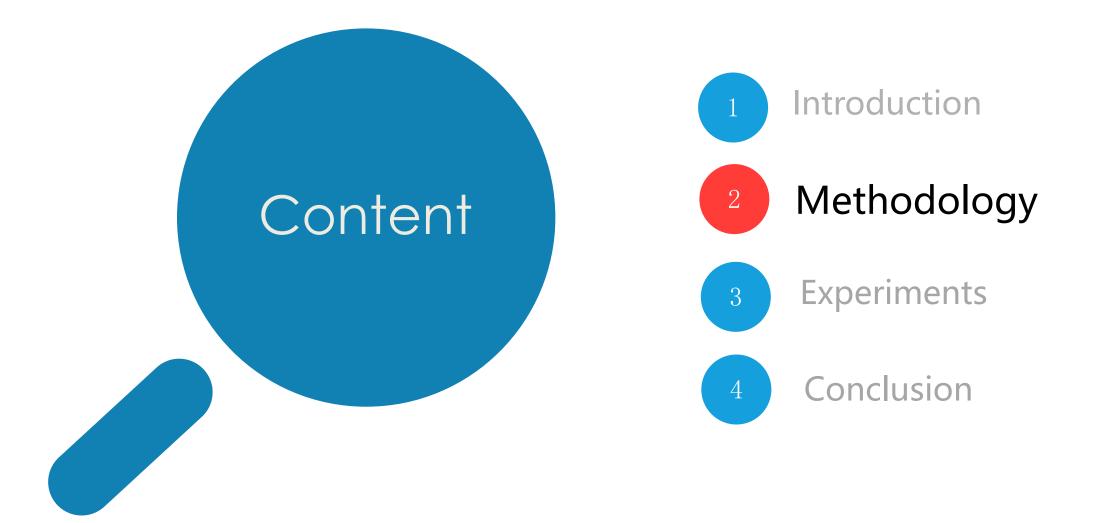
[1] Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.[2] Wang, Xiaolong, et al. "Non-local neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Motivation Related Work

Closer look to dual attention block

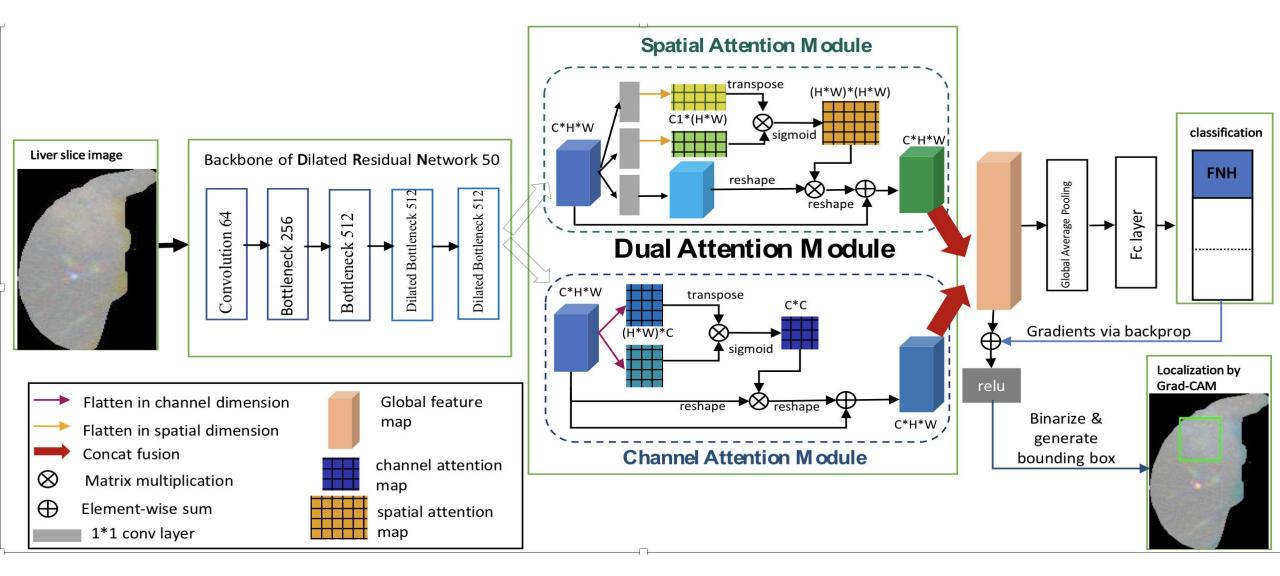


[1]: Wang, Xiaolong, et al. "Non-local neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.



Overview of my research

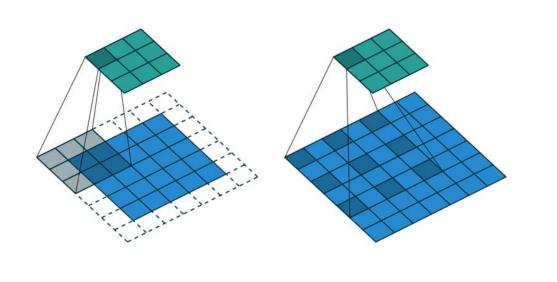
Methodology

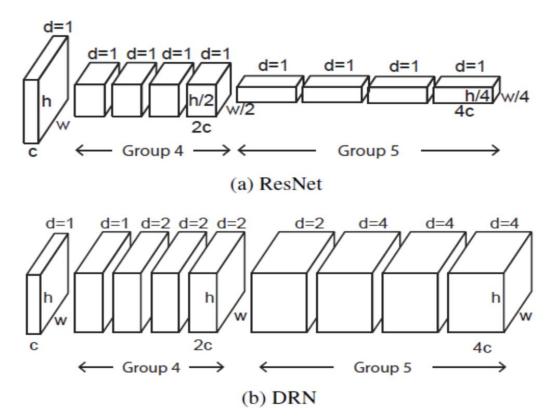


Methodology Backbone Network

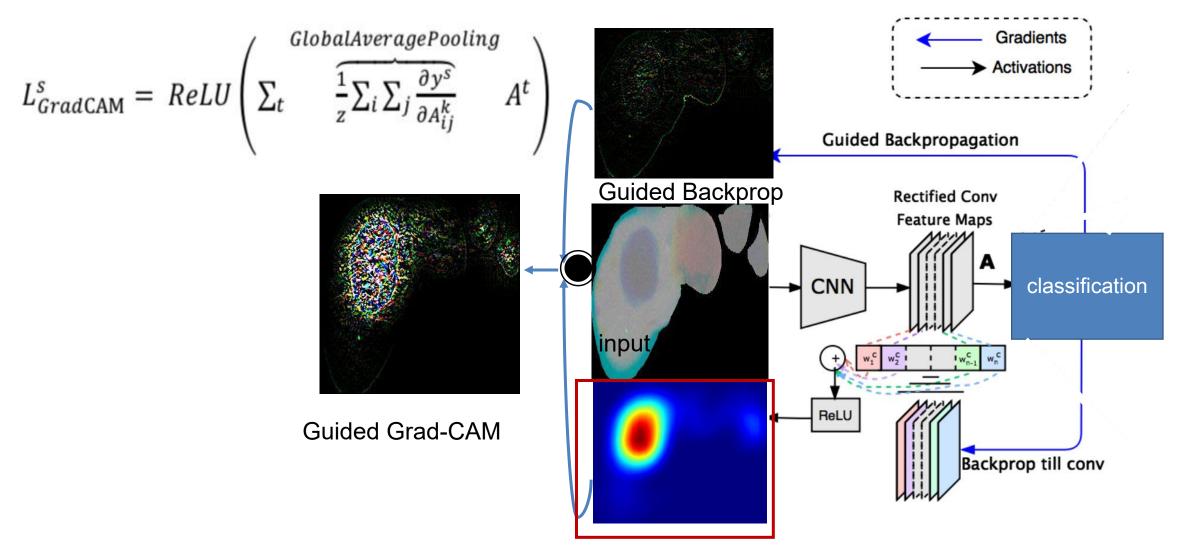
Dilated Residual Network (DRN) (Yu et al. 2017)

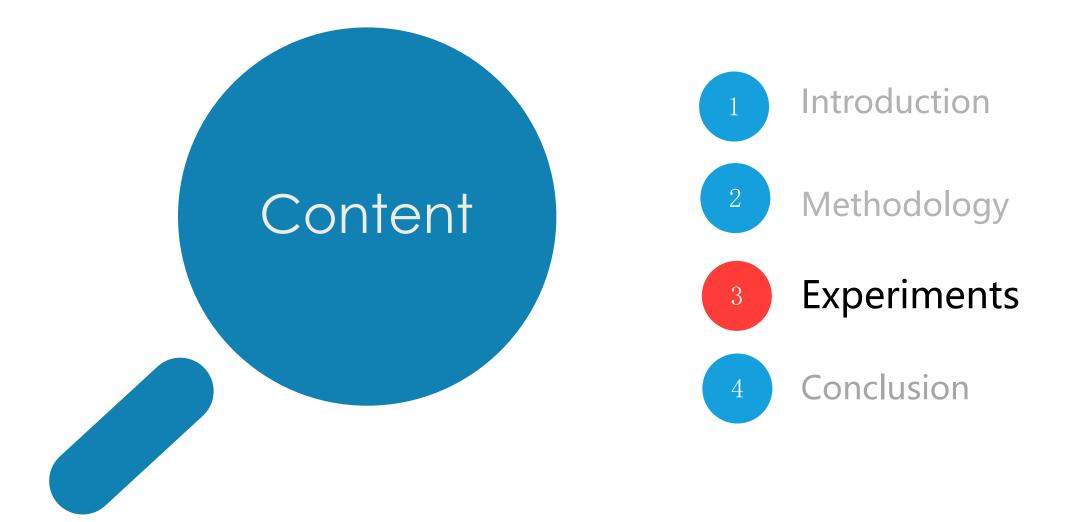
DRN is chosen as the backbone classification network. Since the output of Group5 in DRN is <u>28*28</u>, which is much larger than that of original Resnet.





Selvaraju et al. 2017) Gradient-weighted Class Activation Maps (Grad-CAM) (Selvaraju et al. 2017)





Experiments Dataset

A total of 1091 CT liver slice images in the arterial phase were included in our dataset, containing five types: normal, CYST, FNH, HCC and HEM. The data distribution is listed in **the following table**. To leverage 3D context information, each liver slice image contains two pieces of neighboring slice information on the z-axis. The input images were all resized to $224 \times 224 \times 3$. To eliminate the effect of randomness, we split our dataset twice and the patient case did not overlap among the train set, validation set and test set.

Туре	Train		Validati	Validation		Test	
	Set1	Set2	Set1	Set2	Set1	Set2	
Normal	135	126	41	57	51	44	227
CYST	168	166	56	59	69	68	293
FNH	75	75	29	27	26	28	130
НСС	149	143	52	57	50	51	251
HEM	112	114	38	37	40	39	190

Experiments

Classification performance comparison with other attention-based CNN, baseline DRN, state-of-the-art ROI-level lesion classification method (ResGLNet).

1. Companson of class wise classification accuracy									
Method	Normal	CYST	FNH	HCC	HEM				
DRN50 [18]	0.9788	0.9327	0.7596	0.8427	0.5278				
SEResnet50[14]	0.9334	0.9327	0.7788	0.9116	0.5917				
RAResnet50[13]	0.9675	0.9182	0.7596	0.8227	0.5556				
SADRN50-A	0.9577	0.9096	0.8132	0.8816	0.6625				
SADRN50-B	0.9334	0.8761	0.7775	0.8220	0.5458				
CADRN50-A	0.9675	0.9551	0.8530	0.9016	0.6181				
CADRN50-B	0.9588	0.9413	0.8324	0.8322	0.5847				
DADRN50-A	0.9690	0.9451	0.7802	0.8024	0.7069				
DADRN50-B	0.9804	0.9551	0.8159	0.9116	0.6819				
ResGLNet [21]	-	0.9615	0.8405	0.8846	0.8462				

1. Comparison of class-wise classification accuracy

- ① Different normalization strategy in dual attention block: sigmoid(A) softmax(B)
- ② Different fusion strategy of spatial and channel attention: sum fusion(A) concatenate fusion(B)

Comparison of 5-class overall classification performance

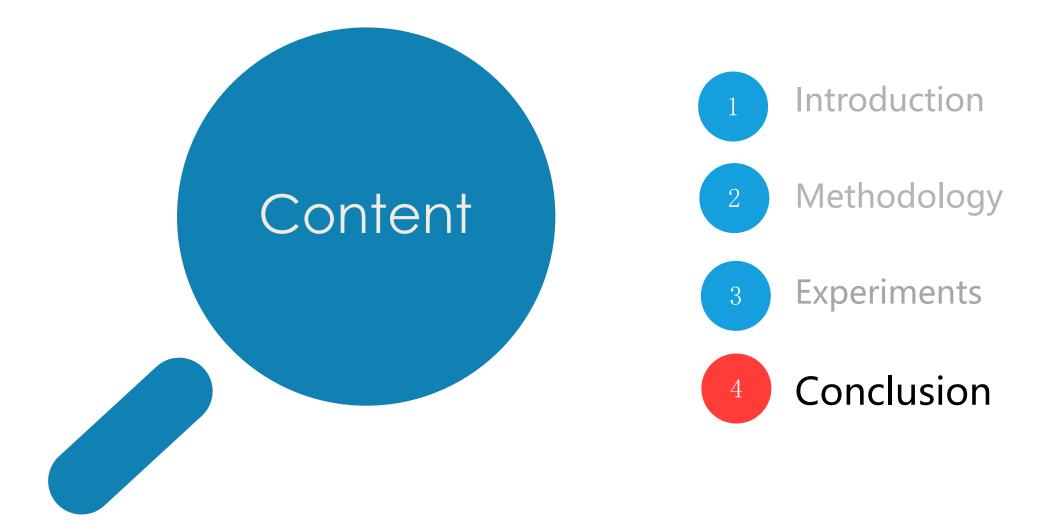
Method	Accuracy	F1	Precision	Recall
DRN50 [18]	0.8083	0.8197	0.8294	0.8207
SEResnet50 [14]	0.8296	0.8265	0.8552	0.8149
RAResnet50 [13]	0.8047	0.8041	0.8304	0.7905
SADRN50-A	0.8449	0.8372	0.8463	0.8346
CADRN50-A	0.8591	0.8263	0.8506	0.8149
DADRN50-A	0.8407	0.8213	0.8446	0.8111
DADRN50-B	0.8690	0.8412	0.8528	0.8386

Experiments

Weakly-supervised localization performance comparison with the state-of-the-art attention-based CNN and baseline DRN.

	Local	ization Aca	_ total nut	m of correc	ct loca	lized slices	s for class c		
	$Localization Acc_c = \frac{1}{total num of slices for class c}$						-		
						CYST	FNH	нсс	HEM
Method	CYST	FNH	HCC	HEM	(a)	-	•	-	- 19 - 19
DRN50 [18]								-	
	0.5110	0.6676	0.5941	0.3798					
SEResnet50 [14]					(b)	S			•
	0.1898	0.0742	0.7327	0.2532	_				
RAResnet50 [13]	0.2628	0.0742	0.6931	0.3292	(c)	CYST	FNH	нсс	нем
DADRN50-B	0.5986	0.6676	0.7327	0.5064	(d)				

(a) Grad-CAM map of DRN; (b) Grad-CAM map of DADRN; (c) weakly-supervised localization result generated by (b);(d) ground truth of each slice image.



Conclusion

Dual attention module improve DRN's lesion recognition ability

- DADRN is comparable to state-of-the-art ROI-level classification method and is superior to most state-of-the-art attention-based methods in lesion classification task and weakly-supervised lesion localization task.
- In future, we are going to develop a 3D attention-based network for 3D CT volumes to improve the classification accuracy. In addition, building a large scale liver lesions dataset remains a challenging task.

