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Introduction

The region proposal task Is generating a set of
candidate regions that contain an object. In an Image,
there are too small number of hard negative
examples compared to the vast number of easy
negatives, so the region proposal networks struggle
to train hard negatives.

In this paper, we propose Negative Region Proposal
Network(nRPN) to 1mprove Region Proposal
Network(RPN).

In this paper, our main contributions are,

« NRPN learns hard negative examples from false
positives of RPN and provides hard negative
examples to RPN. By training RPN and nRPN
together, we can easily get hard negatives from
NRPN which is only used for training.

* Also we propose Overlap Loss which makes more

effective for learning both the size of large and

small objects.

Overlap Loss

Since small objects tends to have a lower loU with
anchor than large objects, RPN was not well trained
on the small objects. However, this overlap loss can
help to learn more balanced with object size.
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« The nRPN aims to propose hard negative
examples that the RPN might Incorrect.
NRPN trains with the false positives from
RPN, In the meanwhile, RPN trains with the
hard negative examples which are proposed
by the nRPN.

 Both RPN and nRPN train at the same time,
they provide positive or negative examples
to each other and gradually generates more
difficult examples.

Positive Example

Fig 1. Framework of (a) original RPN and (b) RPN with nRPN
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Future Works
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Our future works will be applying
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proposed hard example training method
to other different tasks such as object
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Fig 2. Recall rates of the Bro osed model and other region proposal models
ASCAL VOC 2007 testset.
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Table 1. Results of ablation studies on the
PASCAL VVOC 2007 dataset.
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