FAST: Flow-Assisted Shearlet Transform for Densely-sampled Light Field Reconstruction

Yuan Gao, Reinhard Koch, Robert Bregovic and Atanas Gotchev

Christian-Albrechts-Universität zu Kiel

- Introduction
- Related Work
 - Shearlet Transform (ST)
 - Optical Flow
- Methodology
 - Motivation
 - Flow-Assisted Shearlet Transform (FAST)
- Experiments
- Conclusion

- Densely-Sampled Light Field (DSLF)
 - A 4D approximation of the plenoptic function [1]
 - Disparities between adjacent views are less than one pixel [2]

[1] M. Levoy and P. Hanrahan, "Light field rendering," in SIGGRAPH, 1996, pp. 31–42.

[2] S. Vagharshakyan, R. Bregovic, and A. Gotchev, "Image based rendering technique via sparse representation in shearlet domain," in ICIP, 2015, pp. 1379–1383.

- DSLF-based Research [3]
 - Depth estimation
 - Super-resolution

...

• Synthetic aperture imaging

[3] G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, "Light field image processing: An overview," IEEE J-STSP, vol. 11, no. 7, pp. 926–954, 2017.

- DSLF's applications
 - 3D-TV [4]
 - Virtual Reality (VR) [5]

[4] A. Smolic, "3D video and free viewpoint video - from capture to display," Pattern Recognition, vol. 44, no. 9, pp. 1958– 1968, 2011.

[5] J. Yu, "A light-field journey to virtual reality," IEEE MultiMedia, vol. 24, no. 2, pp. 104–112, 2017.

• DSLF reconstruction from Sparsely-Sampled Light Fields (SSLFs)

- Introduction
- Related Work
 - Shearlet Transform (ST)
 - Optical Flow
- Methodology
 - Motivation
 - Flow-Assisted Shearlet Transform (FAST)
- Experiments
- Conclusion

Related Work (ST)

- Shearlet Transform (ST) [6, 7]
 - Pre-shearing
 - Shearlet system construction
 - Sparsity regularization
 - Post-shearing

[6] S. Vagharshakyan, R. Bregovic, and A. Gotchev, "Light field reconstruction using shearlet transform," IEEE TPAMI, vol. 40, no. 1, pp. 133–147, 2018.
[7] S. Vagharshakyan, R. Bregovic, and A. Gotchev, "Accelerated shearlet-domain light field reconstruction," IEEE J-STSP, vol. 11, no. 7, pp. 1082–1091, 2017.

Related Work (ST)

- Sparsity regularization
 - Analysis transform S
 - Hard thresholding T_{λ_i}
 - Synthesis transform S*
 - Double overrelaxation (DORE, optional)

$$\hat{f}_i = S^* \left(T_{\lambda_i} \left(S \left(f_i + \alpha (f_0 - M \circ f_i) \right) \right) \right)$$

10

Related Work (Optical Flow)

- View synthesis using optical flow
 - Backward warping
 - Image blending with a soft visibility map ($V_{t \leftarrow 0}$)

$$\mathcal{I}_t = \lambda \circ g(\mathcal{I}_0, \mathcal{F}_{t \to 0}) + (1 - \lambda) \circ g(\mathcal{I}_1, \mathcal{F}_{t \to 1}),$$
$$\lambda = \frac{(1 - t)\mathcal{V}_{t \leftarrow 0}}{(1 - t)\mathcal{V}_{t \leftarrow 0} + t(1 - \mathcal{V}_{t \leftarrow 0})},$$

- It is difficult to calculate inverse optical flows, $\mathcal{F}_{t \to 0}$ and $\mathcal{F}_{t \to 1}$
- They are approximated from bidirectional optical flows, $\mathcal{F}_{0\to 1}$ and $\mathcal{F}_{1\to 0}$ $\tilde{\mathcal{F}}_{t\to 0} = -(1-t)t\mathcal{F}_{0\to 1} + t^2\mathcal{F}_{1\to 0},$ (2) $\tilde{\mathcal{F}}_{t\to 1} = (1-t)^2\mathcal{F}_{0\to 1} - t(1-t)\mathcal{F}_{1\to 0}.$

(1)

[8] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and J. Kautz, "Super SloMo: High quality estimation of multiple intermediate frames for video interpolation," in *CVPR*, 2018, pp. 9000–9008.

- Introduction
- Related Work
 - Shearlet Transform (ST)
 - Optical Flow
- Methodology
 - Motivation
 - Flow-Assisted Shearlet Transform (FAST)
- Experiments
- Conclusion

Methodology

- Motivation
 - ST is especially effective in reconstructing a DSLF from a SSLF with a large disparity range (> 16 pixels) [9]
 - ST requires a precise disparity estimation of the input SSLF, which can be solved by using a state-of-the-art optical flow method
 - The qualities of estimated bidirectional disparity maps are not good enough to perform DSLF reconstruction
 - How to combine ST-based and disparity-based DSLF reconstruction methods?

[9] Y. Gao, R. Koch, R. Bregovic, and A. Gotchev, "IEST: Interpolation-enhanced shearlet transform for light field reconstruction using adaptive separable convolution," in EUSIPCO, 2019.

Methodology

- Flow-Assisted Shearlet Transform (FAST)
 - Disparity Refinement Network (DRN)
 - 6 hierarchies in the encoder part and 5 hierarchies in the decoder part
 - View Synthesis Network (VSN)
 - 4 hierarchies in the encoder part and 3 hierarchies in the decoder part

Fig. 2. An overview of the architecture of FAST. Note that \mathcal{I}_t^{ST} is the view reconstructed by ST and $t \in \left\{\frac{1}{\delta}, \frac{2}{\delta}, ..., \frac{\delta-1}{\delta}\right\}$ (see Sect. 1).

14

Methodology

- Flow-Assisted Shearlet Transform (FAST)
 - Loss functions
 - VSN reconstruction loss, $\mathcal{L}^{\rm VSN}$
 - DRN reconstruction loss, \mathcal{L}^{DRN}
 - Warping loss, \mathcal{L}^{W}

Fig. 2. An overview of the architecture of FAST. Note that \mathcal{I}_t^{ST} is the view reconstructed by ST and $t \in \left\{\frac{1}{\delta}, \frac{2}{\delta}, ..., \frac{\delta-1}{\delta}\right\}$ (see Sect. 1).

$$\mathcal{L}^{\text{FAST}} = \omega_1 \mathcal{L}^{\text{VSN}} + \omega_2 \mathcal{L}^{\text{DRN}} + \omega_3 \mathcal{L}^{\text{W}}, \qquad (3)$$

$$\mathcal{L}^{\text{VSN}} = \left\| \mathcal{I}_t - \mathcal{I}_t^{\text{GT}} \right\|_1,$$
$$\mathcal{L}^{\text{DRN}} = \left\| \tilde{\mathcal{I}}_t - \mathcal{I}_t^{\text{GT}} \right\|_1,$$
$$(4)$$
$$\mathcal{L}^{\text{W}} = \left\| g(\mathcal{I}_0, \mathcal{F}_{t \to 0}^u) - \mathcal{I}_t^{\text{GT}} \right\|_1 + \left\| g(\mathcal{I}_1, \mathcal{F}_{t \to 1}^u) - \mathcal{I}_t^{\text{GT}} \right\|_1,$$

- Introduction
- Related Work
 - Shearlet Transform (ST)
 - Optical Flow
- Methodology
 - Motivation
 - Flow-Assisted Shearlet Transform (FAST)
- Experiments
- Conclusion

- Training datasets
 - Standford light field dataset captured by a Lego gantry
 - 4D light field benchmark with synthetic light fields [10]
 - 220 horizontal-parallax sub-datasets with same spatial resolution of 512 × 512 pixels

[10] K. Honauer, O. Johannsen, D. Kondermann, and B. Goldluecke, "A dataset and evaluation methodology for depth estimation on 4D light fields," in ACCV, 2016, pp. 19–34.

- Evaluation dataset
 - High Density Camera Array (HDCA) [11]

[11] M. Ziegler, R. op het Veld, J. Keinert, and F. Zilly, "Acquisition system for dense lightfield of large scenes," in 3DTV-CON, 2017, pp. 1–4.

- Evaluation dataset
 - High Density Camera Array (HDCA) [11]
 - D_{μ} : Ground-truth horizontal-parallax light fields ($n \times 512 \times 320 \times 3$ pixels)
 - *n* = 97
 - Interpolation rate $\delta=32$
 - S_{μ} : Input SSLFs ($\dot{n} \times 512 \times 320 \times 3$ pixels)

•
$$\dot{n} = \left(\frac{n-1}{\delta} + 1\right) = 4$$

[11] M. Ziegler, R. op het Veld, J. Keinert, and F. Zilly, "Acquisition system for dense lightfield of large scenes," in 3DTV-CON, 2017, pp. 1–4.

- Disparity estimation (for evaluation dataset)
 - Interpolation rate $\delta = 32$
 - Use a state-of-the-art optical flow method, PWC-Net [12]
 - Densely-sampled, $\frac{d_{range}}{\delta} < 1$ pixel

[12] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, "PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume," in CVPR, 2018, pp.8934–8943.

- Evaluation criteria
 - Minimum per-view PSNR

$$MSE_{i,\mu} = \frac{1}{3 \times M \times N} \sum_{x=1}^{M} \sum_{y=1}^{N} \left\| \tilde{\mathcal{I}}_{i,\mu}^{d}(x,y) - \mathcal{I}_{i,\mu}^{d}(x,y) \right\|_{2}^{2},$$
$$PSNR_{i,\mu} = 10 \log_{10} \left(\frac{255^{2}}{MSE_{i,\mu}} \right).$$

21

Experiments

- Implementation details
 - ST
 - Iteration number = 100
 - Parameter $\alpha = 20$
 - Use a low-pass initial estimation
 - Use the DORE algorithm
 - Use an Nvidia Titan Xp GPU
 - Min-batch size: 6
 - Learning rate: 0.0001
 - Epoch number: 1,500
 - Training time: 36 hours

$$\hat{f}_i = S^* \left(T_{\lambda_i} \left(S \left(f_i + \alpha (f_0 - M \circ f_i) \right) \right) \right)$$

• Quantitative evaluation

Table I. Minimum per-view PSNR values (in dB, explained in Sect. 4.1) for the performance evaluation of different DSLF reconstruction methods on evaluation SSLF sub-datasets S_{μ} ($1 \le \mu \le 9$).

Method	\mathcal{S}_1	\mathcal{S}_2	\mathcal{S}_3	\mathcal{S}_4	\mathcal{S}_5	\mathcal{S}_6	\mathcal{S}_7	\mathcal{S}_8	\mathcal{S}_9
SepConv (\mathcal{L}_1) [7]	21.018	17.579	20.330	22.215	24.955	25.924	18.141	18.781	22.715
PIASC (\mathcal{L}_1) [9]	21.015	17.572	20.332	22.221	24.961	25.929	18.140	18.784	22.709
ST [4]	22.699	17.634	20.231	23.842	25.752	26.527	18.015	18.727	22.304
FAST	24.683	17.988	20.828	23.566	25.659	27.002	18.393	19.171	22.884

Qualitative evaluation

- Introduction
- Related Work
 - Shearlet Transform (ST)
 - Optical Flow
- Methodology
 - Motivation
 - Flow-Assisted Shearlet Transform (FAST)
- Experiments
- Conclusion

Conclusion

- FAST performs DSLF reconstruction by means of
 - PWC-Net, a state-of-the-art optical flow method
 - ST, a state-of-the-art DSLF reconstruction method
 - Super-SloMo, a state-of-the-art video frame interpolation method
- FAST outperforms the other state of the arts on nine challenging horizontal-parallax real-world DSLF sub-datasets for varying large disparity ranges (16 26 pixels)