

Introduction

Fig. 1: two butterflies of one class & two leaves from different cultivars, indicating large intra-class variations and small inter-class variations.

Research Gap.

- 1. Separate use of contour or region features may fail to function in the very challenging cultivar-level leaf classification and butterfly classification.
- 2. Combined use of contour and region require high feature dimensionality and large training datasets.

Motivation.

How to efficiently and effectively classify the shapes via integral of both contour and region features.

Contributions

- We propose a novel contour covariance (CC) descriptor to characterize covariance features for shape classification.
- The proposed CC descriptor is compact yet informative, as well as invariant to scale, rotation and translation.
- The experimental results on Leaf & Butterfly datasets demonstrate the effectiveness and efficiency of the proposed method.

CONTOUR COVARIANCE: A FAST DESCRIPTOR FOR CLASSIFICATION

Xiaohan Yu^{1,2}, Shengwu Xiong², Yongsheng Gao¹, Xiaohui Yuan² ¹Griffith University; ²Wuhan University of Technology

Fig. 2: An overview of the proposed method

- **Step 2**: calculate covariance matrices using Distance
- the calculated covariance matrices.

Discussions

- Minkowski metric for shape matching.
- description.

Step 1: determine contour regions under multiple scales. Transform (DT), LBP, and intensity in determined regions. **Step 3**: construct the CC descriptor using coefficients of

Efficiency: The proposed CC descriptor enables a matrix form feature representation for shape description and a fast

Effectiveness: Both contour and region features are integrated in a multiscale manner for discriminative shape

Algorithm

SC (TPAMI 200 SC+DP (TPAM) IDSC (TPAMI 20 **IDSC+DP** (TPA) **HSC** (TIP 2014) **MDM (TIP 201**) HF (PRL 2012) **Proposed metho**

Table 1. Matching time on Leaf & Butterfly datasets

Experimental Results

	Matching time (ms)	
	Leaf	Butterfly
)2)	2.90×10 ⁰	3.00×10 ⁰
I 2002)	1.51×10 ⁻¹	1.08×10 ⁻¹
2007)	1.90×10^{0}	2.10×10^{1}
MI 2007)	1.11×10 ⁻¹	1.13×10 ⁻¹
)	9.70×10-3	8.10×10-3
2)	6.77×10 ⁻²	5.00×10 ⁻²
	1.17×10^{1}	8.50×10^{1}
od	6.62×10 ⁻²	5.81×10-2

