PORTRAIT SEGMENTATION BY DEEP REFINEMENT OF IMAGE MATTING

C. Orrite, M.A. Varona, E. Estopiñán, J.R. Beltrán

Graphics and Imagine lab, Aragon Institute of Engineering Research, University of Zaragoza, Spain

-INTRODUCTION

- This paper introduces a novel framework for portrait segmentation with high precision on boundary area.
- Our proposal is based on:
 - 1. A trimap generated by fusing information coming from Mask R-CNN and DensePose algorithms.
 - 2. An alpha matting algorithm runs over the previous trimap
 - 3. Portrait is refined by a Fully Convolutional Network (FCN) plus a transpose convolution.
- Tested on two evaluation datasets:

0 2019

- PFCN, considered the largest publicly available dataset
- COCO dataset

OVERVIEW

Alpha matting based on Mask R-CNN and Dense pose

FLASH TEXT

- Four stages are defined:
- 1. Trimap generation
- 2. Alpha matting
- 3. Boundary and leftover masks generation
- 4. FCN plus regression

ATTENTION

Algorithm 1. Boundary mask generation

Input: binarized matte image I, kernel size th1 dilate_layer = dilate (I, th1) erode_layer = erode (I, th1) boundary_mask = dilate_layer - erode-layer boundary = GaussianBlur (boundary_mask, (2*th1)+1) Output: boundary

Algorithm 2. Leftover mask generation

Input: binarized matte image I, kernels size th1 and th2 Leftover_mask = erode(I, th2) leftover = GaussianBlur (leftover_mask, (2*th1)+1) Output: leftover

NUMERICAL RESULTS

Method	PFCN	сосо	COCO+
Shared Matting	94.0%	88.1%	94.0%
Portrait FCN+	95.9%	68.6%	
BSN	96.7%	77.7%	
ours	97.0 %	89.6%	95.2%

Image: Non-StructureImage: Non-StructureI

CONCLUSION

RESULTS

- Improvement of matting techniques
- Hair segmentation is still a challenging issue
- Future work: an end-to-end fully convolutional network taking as input the masks provided by Mask R-CNN and DensePose