

DEEP FACE VERIFICATION FOR SPHERICAL IMAGES

<u>Marcos Cirne</u>¹, Fernanda Andaló¹, Rafael Dias², Thiago Resek³, Gabriel Bertocco¹, Ricardo Torres¹ and Anderson Rocha¹

¹Institute of Computing, University of Campinas (UNICAMP), Brazil ²Eldorado Institute, Brazil, ³Motorola Mobility LLC, Brazil

INTRODUCTION

Several problems regarding face image analysis

Leveraged by the power of **CNNs**

Popularity of 360° cameras is increasing

Wider field-of-view than traditional cameras

Examples of applications

5

<u>Problem</u>: conventional CNNs are not trained for spherical images

<u>Solution</u>: apply transformation from polar coordinates to euclidean coordinates

A possibility: Equirectangular Projection <u>Problem</u>: Polar regions become severely distorted

The same happens with faces

Pole region High distortions

<u>Naïve Solution</u>: trace a tangent plane to every point (ϕ , θ) in a sampling process and calculate its planar projection

Computationally expensive!!!

CNNs can be trained to be immune to distortions

Spherical Image

Planar Projections

But demands too many planar projections from a single spherical image

reasonina for complex data

OBJECTIVES & CONTRIBUTIONS

OBJECTIVES & CONTRIBUTIONS

Novel approach for face verification which works on spherical images

New spherical face dataset: MOT-360 Face

Spherical version of VGG Faces dataset: VGG-360 Faces

Comparative analysis against planar and spherical CNNs

RELATED WORK

Zhao et al.: Distortion-Aware CNNs for Spherical Images; IJCAI 2018

14

Esteves et al.: Learning SO3 Equivariant Representations

With Spherical CNNs, ECCV 2018

Khasanova & Frossard: Graph-Based Classification of

Omnidirectional Images, ICCV 2017

S2-CNN by Cohen et al.: Spherical CNNs, ICLR 2018

(a) 360° Cameras (b) 360° Image

(c) Regular Kernel (d) SphereNet Kernel

<u>Coors et al.</u>: **SphereNet**: Learning Spherical Representations for Detection and Classification in Omnidirectional Images, ECCV 2018

PROPOSED METHODOLOGY

Face verification methodology for spherical images

DATASETS

UNICAMP

MOT-360 Camera Modulus

MOT-360 Dataset: Image Acquisition

Original Equirectangular Image (6240 x 3120 pixels)

Final Cropped Image (3120 x 3120 pixels)

23

MOT-360 Dataset: Face Annotation & Normalization

MOT-360 Dataset: General Information

<u>360° Camera Angles</u>: based on the polar coordinates of the bounding boxes of each annotated face

Dataset Size: 7,409 equirectangular face images from 52 unique individuals

Each individual has at least 25 face images

MOT-360 Dataset: Training Protocol

Training Split	80% of the identities with the least number of images 42 IDs, 4128 images
Test Split	All other images 10 IDs, 3281 images

MOT-360 Dataset: Training Protocol

I million positive + I million negative pairs created for each split

Gallery size: n = 10

MOT-360 Dataset: Examples

VGG 360 Face Dataset: General Information

Curated version of the VGG Face Dataset (2.6 M face images)

Dlib face detector was run to detect eye positions in all images (only worked for a small portion of the dataset)

Final subset size: ~750,000 images with 2,558 IDs

VGG 360 Face Dataset: Augmentation Pipeline

(750 K images)

Projections

(7.5 M images)

(80-20 split)

VGG 360 Dataset: Examples

RESULTS

UNICAMP

Tests with several networks as *feature extractors*:

VGG Face: trained with the original VGG Faces (planar images)

Spherical network proposed by Esteves et al.

S2-CNN: proposed by Cohen et al. and fine-tuned with VGG 360 Face dataset

VGG-FT: same as VGG Face, but fine-tuned with the curated version of VGG Face dataset (planar images)

VGG 360: our network, fine-tuned with VGG 360 Face dataset

RESULTS

CONCLUSIONS & FUTURE WORK

CONCLUSIONS

Feature	Pair	Results	Distortion
Quality	Protocol		Issues
VGG-360 network can provide meaningful features for training a binary classifier for face verification	Significant number of positive / negative pairs for all the tests	Relevant results when compared against spherical CNNs	More research needed in operations on the spherical domain

36

FUTURE WORK

Extension	New	Comparative	Dataset
	Architecture	Analysis	Upgrades
Extension of the proposed method for face identification	Development of an original deep architecture for face verification	Comparisons with other spherical CNNs	Addition of more identities and images to the proposed dataset

37

ACKNOWLEDGEMENTS

THANK YOU!!!

Contact: marcos.cirne@ic.unicamp.br

