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Introduction

• Human head models are generated from anatomical images

and used to generate volume conductor for brain stimulation

applications.

• Fast generation of personalized head models are needed for

stimulation planning and other clinical use.

• This task is challenging as it requires a segmentation of all

head tissues (many appears in low-contrast in MRI).

Contribution

• Deep convolutional neural network (CNN) architecture is

proposed to segment all head tissues using T1-w MRI.

• The proposed architecture has single encoder track and

multi-decoders with interconnections.

• Results indicate that head models generated using the

proposed method are of strong matching brain stimulation

results compared with those generated manually.
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Head model construction

Network architecture

• 23 layer network with single input and N outputs.

• Individual decoders provide more robust design to avoid

network confusion when segmentation labels is large.

• Interconnections provide feature exchange between different

decoders. We have used two interconnections labeled by the

blue arrows above.

• Segmentation is decides with high vote label and training is

conducted with different slicing direction (axial, sagittal, and

coronal).
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Proposed network architecture with N=4.
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Transcranial Magnetic Stimulation (TMS)

Results

Conclusion

More details are in our recent publication:
Rashed et al., NeuroImage 202,116132, 2019 

• Figure-eight TMS coil is located

above hand motor area.

• Isotropic tissue conductivity is

computed using Cole-Cole model for

10 kHz. TMS coil position

• Leave-one-out cross-validation of 18 subjects and 13 tissues.

• Training to minimize cross entropy cost function using

ADAM algorithm for 10 epochs and batch size =2.

• High performance is achieved in brain tissues (e.g. GM,

WM, and cerebellum) compared to non-brain tissues (e.g.

dura, mucous, and blood vessels).

• Better dice coefficient can be achieved compared with

conventional U-net architecture.
MRI Golden truth Proposed

Segmentation results and DC comparison with U-net

TMS induced electric field
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• High matching in both

segmentation and induced

electric field is observed

between models generated

using proposed method and

golden truth.


