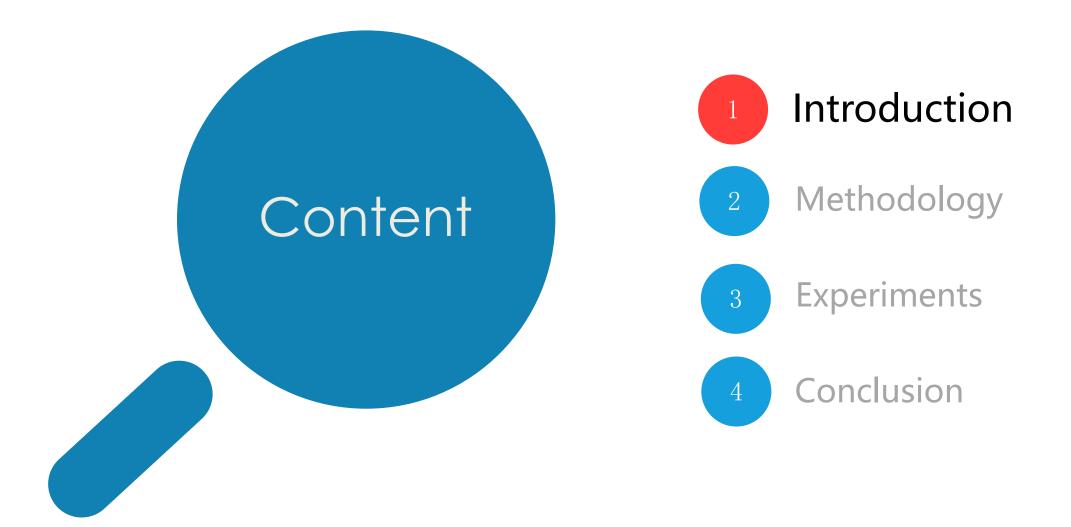
IEEE ICIP 2019

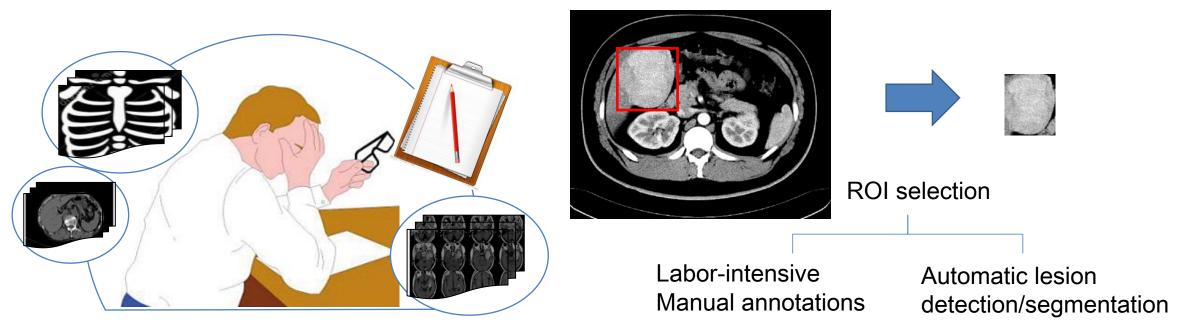
"A dual attention dilated residual network for liver lesion classification and localization on CT images " *Xiao Chen, Lanfen Lin, Dong Liang, Hongjie Hu, Qiaowei Zhang, Yutaro Iwamoto, Xian-Hua Han, Yen-Wei Chen, Ruofeng Tong, Jian Wu*. Zhejiang University, Ritsumeikan University, Sir Run Run Shaw Hospital



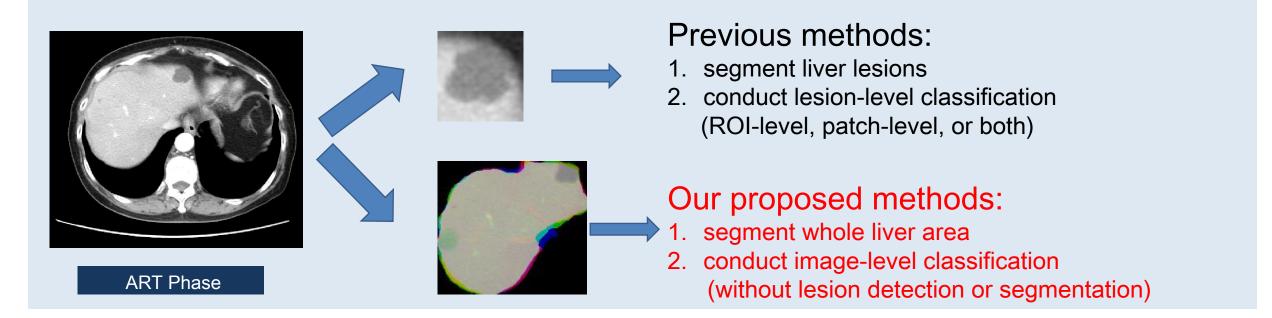
Introduction Background

Liver cancer is the second most common cause of cancer-related deaths among men and sixty among women.

Major concern limits automatic liver lesion classification is that previous methods are conducted on lesion level, which relies heavily on <u>ROI selection process</u>.



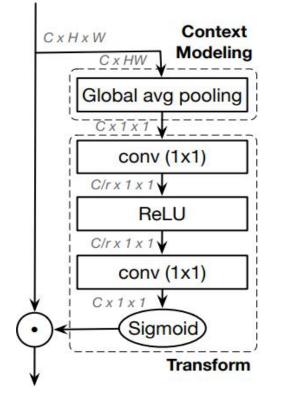
Introduction Motivation



To relieve the burden of expensive pixel-level lesions' annotations, we first explored the potential of using the <u>whole liver slice image for liver lesion classification</u> without <u>pre- detection or pre-selection</u> of the ROI.

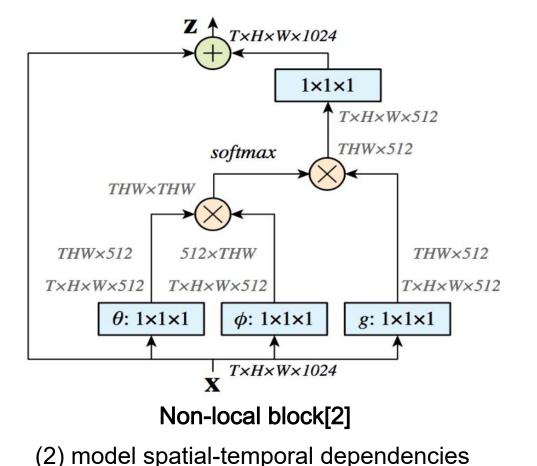
Introduction Related work

> Attention mechanism in Computer Vision



Squeeze-Excitation block[1]

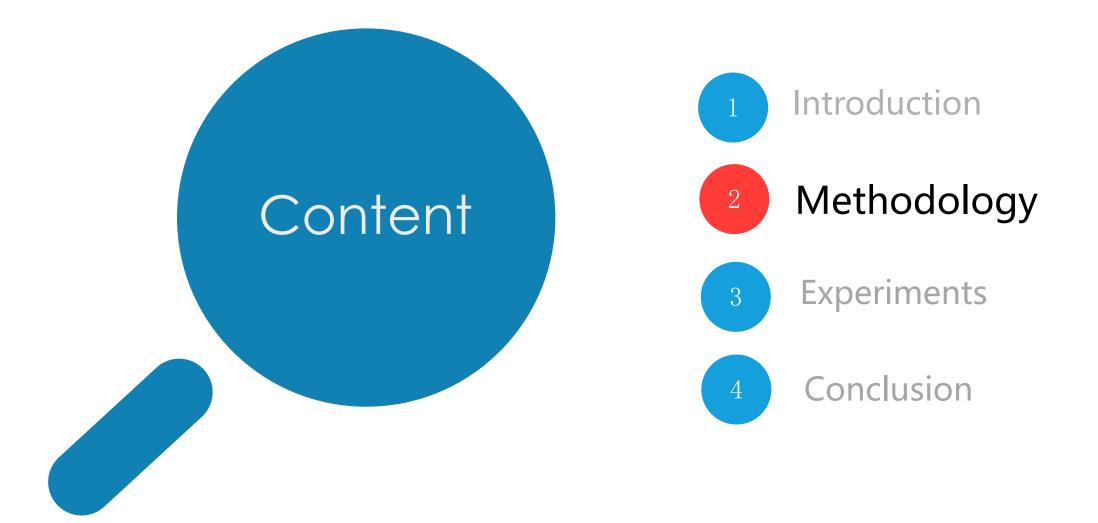
(1) explicitly model channel-interdependencies



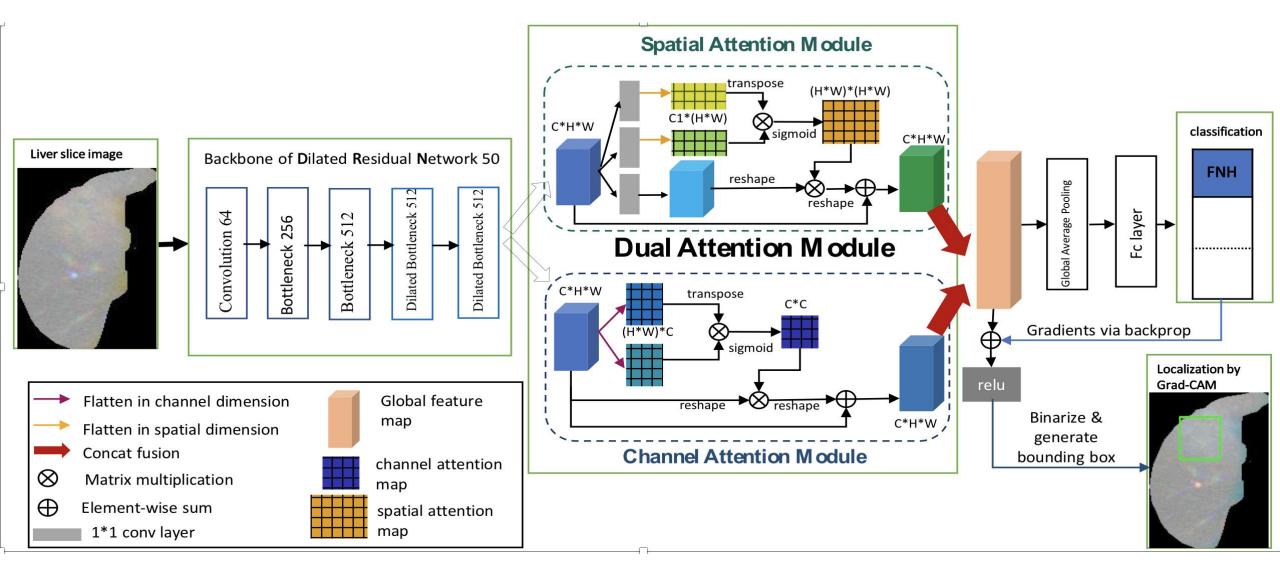
Introduction Contributions

We proposed the DADRN framework which no longer relies on lesion annotations and could tackle the lesion classification problem as a one-stage process.

- Our dual-attention mechanism integrates similar features of high-level feature map from a global view, which improves DRN's lesion recognition performance
- The experimental results show that DADRN is comparable to the ROI-level classification model and is superior to other state-of-the-art attention-based classification models in lesion classification task and weakly- supervised lesion localization task.



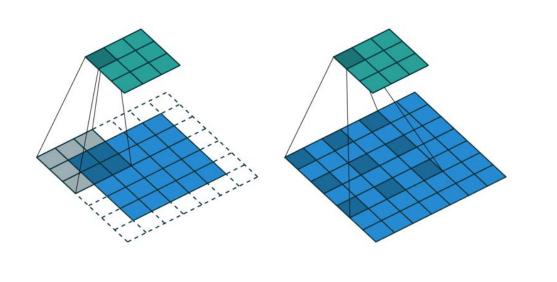
Methodology Overview of framework

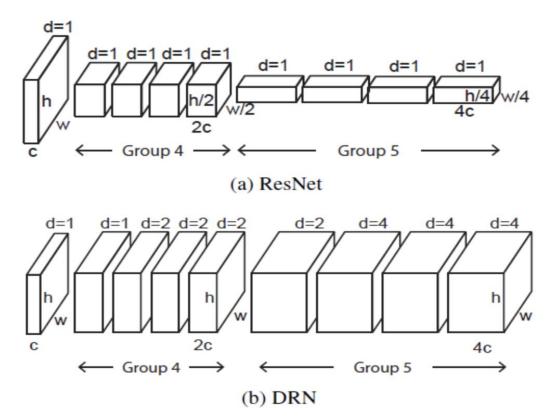


Methodology Backbone Network

Dilated Residual Network (DRN) (Yu et al. 2017)

DRN is chosen as the backbone classification network. Since the output of Group5 in DRN is <u>28*28</u>, which is much larger than that of original Resnet.

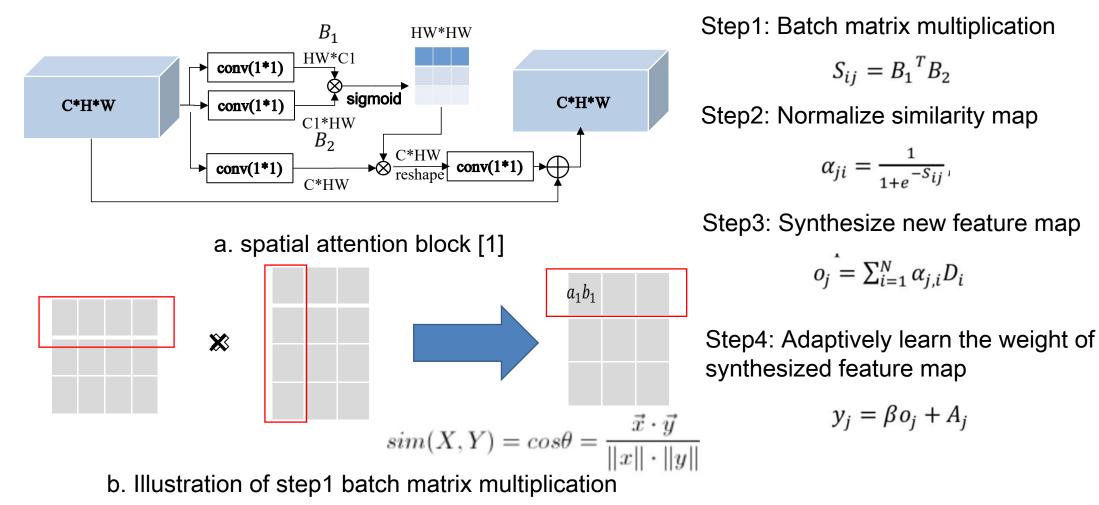




Our Dual attention block

Closer look to dual attention block

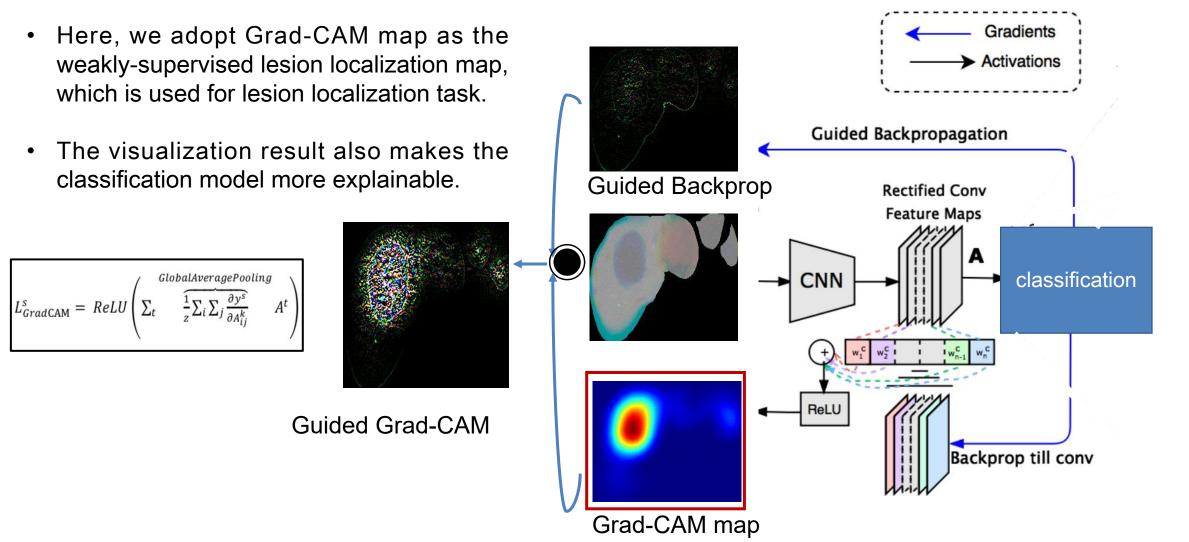
Methodology

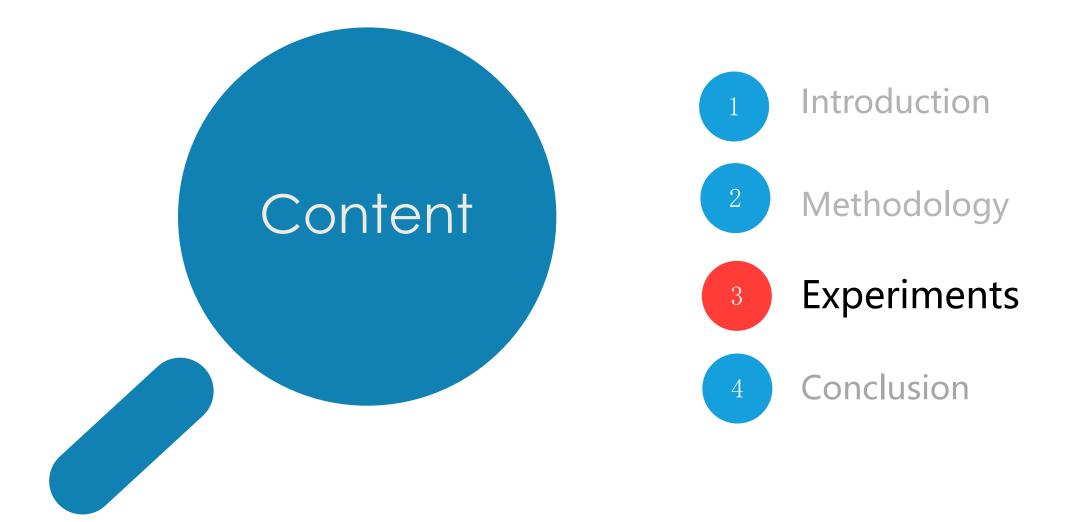


[1] Wang, Xiaolong, et al. "Non-local neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Methodology Visualization of Attention Maps

Gradient-weighted Class Activation Maps (Grad-CAM) (Selvaraju et al. 2017)





Experiments Dataset

A total of 1091 CT liver slice images in the arterial phase.

Five types: normal, CYST, FNH, HCC and HEM.

To leverage 3D context information, each liver slice image contains two pieces of neighboring. The input images were all resized to $224 \times 224 \times 3$. To eliminate the effect of randomness, we split our dataset twice and the patient case did not overlap among the train set, validation set and test set.

Туре	Train		Validation		Test		Total
	Set1	Set2	Set1	Set2	Set1	Set2	-
Normal	135	126	41	57	51	44	227
CYST	168	166	56	59	69	68	293
FNH	75	75	29	27	26	28	130
НСС	149	143	52	57	50	51	251
HEM	112	114	38	37	40	39	190

Experiments

Compared with other attention-based CNN, baseline DRN, state-of-the-art ROI-level lesion classification method (ResGLNet). Our DADRN50-B is superior in most cases and closed to ROI-level method.

Method	Normal	CYST	FNH	HCC	HEM
DRN50 [18]	0.9788	0.9327	0.7596	0.8427	0.5278
SEResnet50[14]	0.9334	0.9327	0.7788	0.9116	0.5917
RAResnet50[13]	0.9675	0.9182	0.7596	0.8227	0.5556
SADRN50-A	0.9577	0.9096	0.8132	0.8816	0.6625
SADRN50-B	0.9334	0.8761	0.7775	0.8220	0.5458
CADRN50-A	0.9675	0.9551	0.8530	0.9016	0.6181
CADRN50-B	0.9588	0.9413	0.8324	0.8322	0.5847
DADRN50-A	0.9690	0.9451	0.7802	0.8024	0.7069
DADRN50-B	0.9804	0.9551	0.8159	0.9116	0.6819
ResGLNet [21]	-	0.9615	0.8405	0.8846	0.8462

1. Comparison of class-wise classification accuracy

① Different normalization strategy in dual attention block: sigmoid(A) softmax(B)

② Different fusion strategy of spatial and channel attention: sum fusion(A) concatenate fusion(B)

Experiments

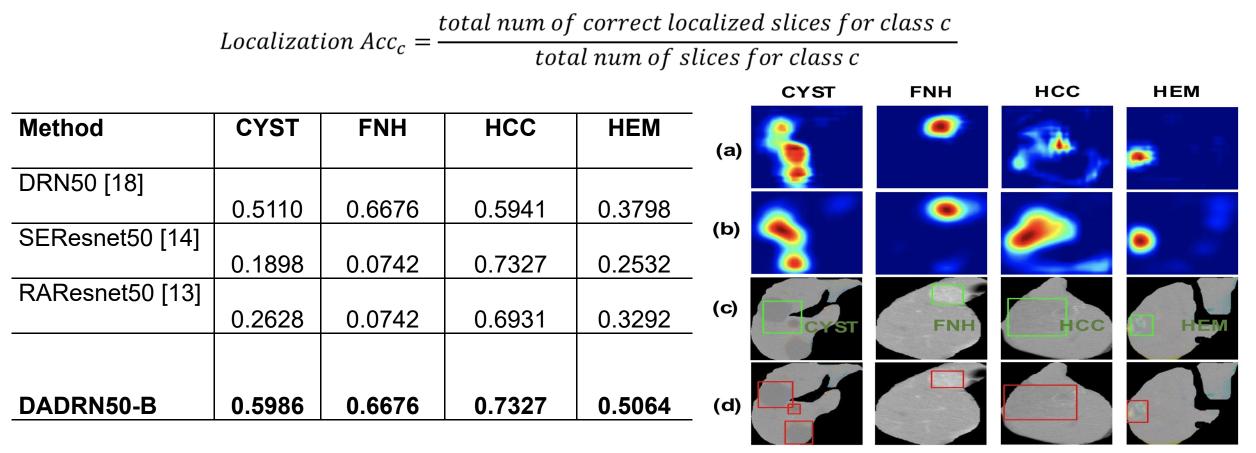
Compared with Image-level methods, Our DADRN50-B is superior in all 5-class classification metrics (include normal liver slice images).

Comparison of 5-class overall classification performanceMethodAccuracyF1PrecisionRecallDRN50 [18]0.80830.81970.82940.8207

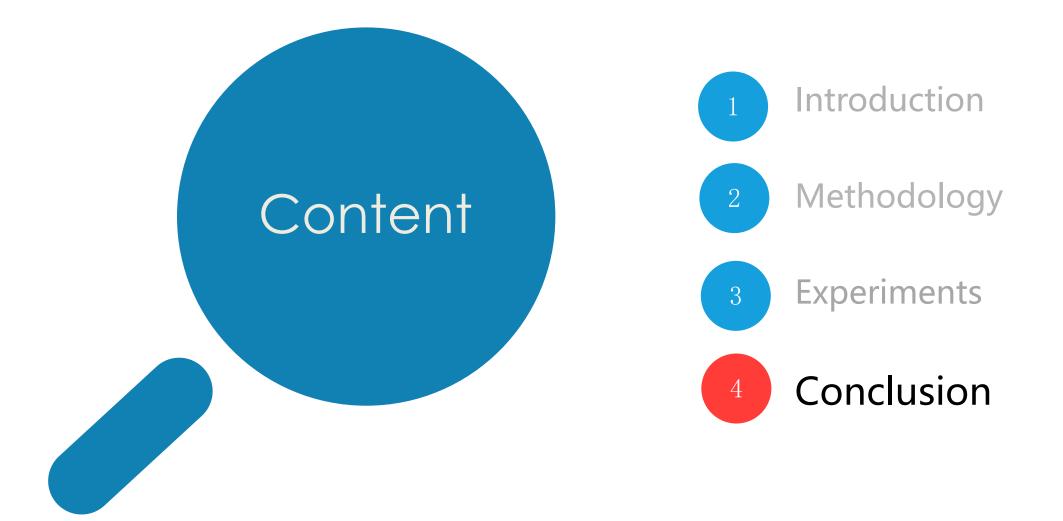
	j			
DRN50 [18]	0.8083	0.8197	0.8294	0.8207
SEResnet50 [14]	0.8296	0.8265	0.8552	0.8149
RAResnet50 [13]	0.8047	0.8041	0.8304	0.7905
SADRN50-A	0.8449	0.8372	0.8463	0.8346
CADRN50-A	0.8591	0.8263	0.8506	0.8149
DADRN50-A	0.8407	0.8213	0.8446	0.8111
DADRN50-B	0.8690	0.8412	0.8528	0.8386
	0.0030	0.0412	0.0320	0.0000

Experiments

Compared with the state-of-the-art attention-based CNN and baseline DRN, our DADRN50-B is much better in lesion localization task.



(a) Grad-CAM map of DRN; (b) Grad-CAM map of DADRN; (c) weakly-supervised localization result generated by (b);(d) ground truth of each slice image.



Conclusion

Our proposed method allows for implementing lesion classification without pre-detection or pre-selection of lesion ROIs.

Dual attention module improve DRN's lesion recognition ability

DADRN is comparable to state-of-the-art ROI-level classification method and is superior to most state-of-the-art attention-based methods in lesion classification task and weakly-supervised lesion localization task.

