010010

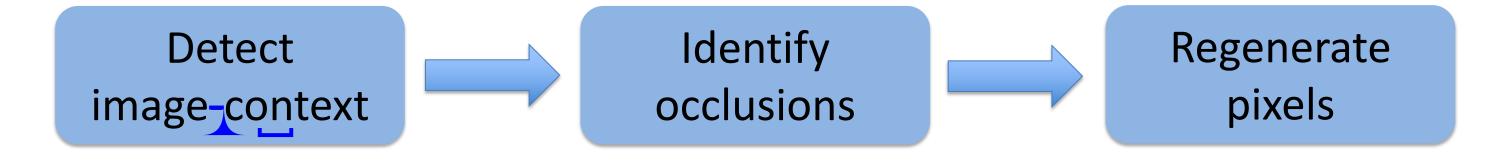
CONTEXT-AWARE AUTOMATIC OCCLUSION REMOVAL

Kumara Kahatapitiya, Dumindu Tissera, Ranga Rodrigo k.kahatapitiy@cs.stonybrook.edu, dumindutissera@gmail.com, ranga@uom.lk

University of Moratuwa, Sri Lanka

MOTIVATION

- Existing image enhancement techniques for occlusion removal:
 - Domain-specific. Eg; shadow removal, image de-raining
 - Require manual-annotation.
- No work tries to capture occlusions based on image_context.


[Wang et al.]

CHALLENGES

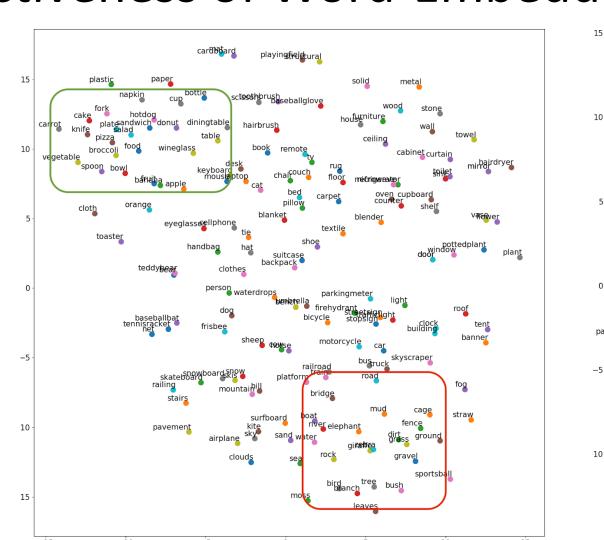
- How to capture image-context in a generic domain?
 - Highly varying and complex.
 - Subjective in human perception, required to be captured objectively.
- How to evaluate?
 - No baseline.
 - No dataset annotating image-context and respective occlusions.

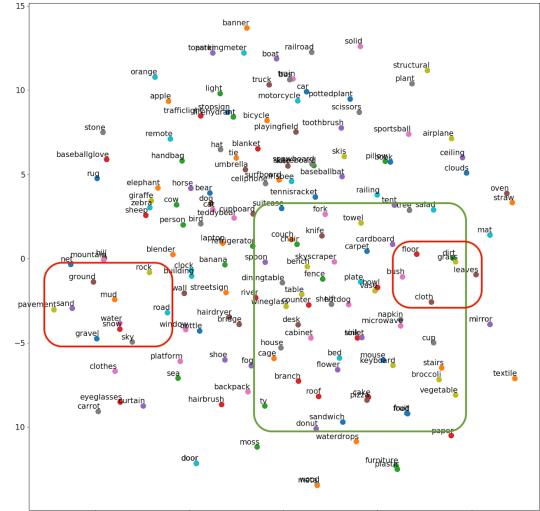
PROBLEM FORMULATION

- Making intelligent decisions:
 - Identifying image_context based on background and foreground objects.
 - Detecting objects not related to image_context as occlusions.
- Producing a visually-pleasing output:
 - Replacing the pixels related to occlusions coherently.

Foreground Segmentator {person, bench, bird, handbag} Relation Predictor {person, handbag} Extractor {building, fence, grass, metal, pavement, tree, wall}

IMPLEMENTATION


- Data used for training sub-networks:
 - Foreground Segmentator foreground segmentations.
 - Background Extractor background class labels.
 - Relation Predictor image captions.
 - Inpainter images and random masks.
- Original corpus vs Modified corpus of image captions for Relation Predictor.
- Random masks for Inpainter.



- Combining sub-networks aggregate errors.
- We evaluate:
 - What is removed?
 - How good is the reconstructed image?
- Direct evaluation of end-to-end system is impossible:
 - Dataset has no annotations on image context or occlusions.
 - Dataset has no image-pairs with and without occlusions.

RESULTS

Effectiveness of Word-Embeddings

User Study

Visually-pleasing		
Positive	992/1245	
	79.7%	
Negative	253/1245	
	20.3 %	

Relation		
Precision	39.03%	
Recall	17.46%	

Visually-Pleasing nature

-CONCLUSION

- Although our approach learns meaningful relationships between object classes and utilizes hand designed algorithms to decide on occlusions, how humans perceive it can be different we establish a baseline for context-aware automatic occlusion removal in a generic domain, even with the lack of a relation based dataset.
- As future work, we hope to develop a dataset that captures human annotations on object relations, which will enable end-to-end training of such networks.