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* Place recognition: The task aims at recognizing the previously
visited places, is the key component of loop closure in most visual Feature
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 Challenges: The challenges are especially introduced in dynamic metric
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. e The similarity matrix of the frame pair is: ol _ metric are conducted.
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on diagonal with those on off-diagonal in the similarity matrix: CONCLUSION
e If the S,;,, is distinctly larger than the S_.. , the two frames have a 1
. aag = y. ; % = 5(AS—0) * In this work an end-to-end deep metric learning network has been
high probability of coming from the same place, then a approaches I te attempted on the place recognition problem with appearance changin
to 1. However, if these two values have no distinct difference or where AS = 5.+ — S4iag, and o and 6 are constant parameters. P . P 5 . p r. . PP . SIfe.
oven S . i< larcer than S t0 a laree extent the two imaces are S L I £ g cimilariti 1S i that of  The effectiveness of the network is significantly improved by using the
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captured from different places. Then we set a as a small value. off-diagonal similarities.
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