

Introduction

Viewpoint estimation aims to determine the rotation angle of an object in its 3D space from a 2D image, as shown in Fig 1. It is challenging due to the great variations in the object's shape, appearance, visible parts, etc. To overcome the above difficulties, this paper proposed a new deep neural network, which employs the key-points of the object as a regularization term and semantic bridge connecting the raw pixels with object's viewpoint.

Fig.1 The 3D pose of an object

The proposed VE-Net

The new deep neural network proposed by this paper is called VE-Net. The overall architecture of VE-Net is given in Fig. 2 and it is composed of two parts, i.e. The key-point detection estimation subnet (KV-Net).

The KD-Net

The KD-Net extract key-points from object's bounding box by using stacked Hourglass structure (Fig 3).

VIEWPOINT ESTIMATION IN IMAGES BY A KEY-POINT BASED DEEP NEURAL NETWORK Jiana Yang, Shilin Wang*, Senior Member, IEEE, and Gongshen Liu School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University

Chair	[8]	[9]	[5]	[18]	Ours
Acc π/6	80	86	N/A	80	81
Mederr	14.8	9. 7	N/A	13.7	14.3
AVP24	17.5	7.4	4.4	N/A	17.8
AVP π/6	27.8	13.8	11.4	N/A	36.5

Table.1 Viewpoint estimation results by various approaches.