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Naturally un-oriented data
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• While some data is naturally upright oriented (faces or numbers) other presents 
random orientations (plankton, galaxies, food).

• When invariance to symmetries (rotations, change of scale, symmetry) is required the 
models become more complicated.

1WHOI-Plankton - https://beagle.whoi.edu/redmine/projects/ifcb-man/wiki/WHOI-Plankton
2FoodAI - http://images.nvidia.com/content/APAC/events/ai-conference/resource/ai-for-research/FoodAI-Food-Image-Recognition-with-Deep-Learning.pdf
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Outline
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State of the art
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The existing approaches to encode rotation equivariance into CNNs can be divided in two
families:

1. Transform the representation on input image or feature maps.

2. Rotating the internal filters.



Rotation-invariant CNN using Scattering Transform23-Sept-2019

Transform the representation on input image
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These methods have the advantages of exploiting conventional CNN implementations, one of
the most popular approach is contained here: data augmentation 1.

The main limitations of these methods:
• The algorithm still need to learn feature representation separately for different

variations of the original data. E.g. Edge-detecting features2 under rotation-invariance
setting still need to learn separately vertical and horizontal edges.

• Some transformations of the data can actually result in the algorithm learning from
noise samples or wrong labels. E.g. random crops applied to the input can capture a
non-interest region.

• The more variations are considered in the data, the more flexible the model needs to
be to capture all the variations in the data.

1D.A. Van Dyk and X.L. Meng. The art of data augmentation. Journal of Computational and Graphical Statistics, 10(1), 2001.
2 D.Ciresan, A. Giusti L.M. Gambardella and J. Schmidhuber. Deep neural networks segment neuroanl membranes in electron microcopy images.. Advances in 
neural information processing systems. 
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Rotating the filters
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Multiple existing approaches seek to encode rotational equivariance into CNNs. Many of
these follow a broad approach of introducing filter or feature map copies at different
rotations.

Some approaches included are:
• Steerable filters :

“An efficient architecture that synthetizes filters of arbitrary orientations from
linear combinations of basis filters, allowing one to adaptatively “steer” a filter to any
orientation.”1

Harmonic Networks 2 capture explicitly the underlying orientations with complex
circular harmonics, finding the orientation by the conjunction of multiple discrete filters.
• Encode equivariance to discrete rotations:

These approaches try to find a compromise between computational resources
required and the amount of information kept by the layers, by keeping the model
shallow or accounting for a limited amount of orientations.

Other approaches include feeding in multiple copies of the CNN input and merge
the output predictions or trying to solve the problem by copying each feature map at
four 90° rotations3.

1Freeman and Adelson. The design and use of steerable filters. IEEE on Pattern Analysis and Machine Intelligence 1991
2Worral, Garbin, Turmukhambetoc, Brostow. Harmonic Networks: Deep Translation and Rotation Equivariance. CVPR 2017
3B. Fasel and D. Gatica-Perez, Rotation invariant neoperceptron. ICPR 2016, Hong Kong, China.
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State of the art
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While the results of this approaches are good, all of them are trained on the commonly used
variation of MNIST that is used for validating rotation-invariant algorithms, MNIST-rot.

This dataset contains 12000 training images and 50000 test samples.

All the samples are rotated by a random angle from 0 to 2π.

1 H. Larochelle et al. An empirical evaluation of deep architectures on problems with many factors of variation. ICML 2007 pages 473 - 480
2 Worral, Garbin, Turmukhambetoc, Brostow. Harmonic Networks: Deep Translation and Rotation Equivariance. CVPR 2017
3 D. Laptev, N. Savinov, J. M. Buhman TI-Pooling: transformation-invariant pooling for feature learning in convolutional neural networks. CVPR 2016 Pages 289 - 297.
4 D. Marcos, M. Volpi, N. Komodakis, D. Tuia Rotation equivariant vector field networks. arXiv: 1612.09346v3.
5 Y. Zhou et al. Oriented Responde Networks CCVPR 2017 Pqges 4961 -4970
6 P. Follman and T. Bottger A rotationally-invariant convolution module by feature map backrotation WACV 2018 pqges 784 - 792

Method Error rate (in %)

SVM1 10.38±0.27

Harmonic Networks2 1.69

TI-Pooling3 1.2

Rotation equivariant vector field networks4 1.09

Oriented Response Networks5 0.76

Rotationally Invariant Conv. Module6 3.51
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State of the art
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Results when trained only with upright oriented samples and validated on randomly rotated
samples. The accuracy is lower.

Some of these methods use more than 1 million of trainable parameters and can not reach
higher accuracy.

1 Y. Zhou et al. Oriented Responde Networks CCVPR 2017 Pqges 4961 -4970
2 P. Follman and T. Bottger A rotationally-invariant convolution module by feature map backrotation WACV 2018 pqges 784 - 792

Method Error rate (in %)

ORN-8(ORPooling)1 16.67

ORN-8(ORAlign)1 16.24

RotInv Conv. (RP_RF_1)2 19.85

RotInv Conv. (RP_RF_1_32)2 12.20
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Our proposal will use the roto-translational output space properties of the scattering
transform.

Expected results
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The network should learn the rotation invariance without the use of data augmentation
techniques.

The main challenge of this work is to design a deep learning network architecture capable
of :

1) Classifying rotated data with unlabeled orientation.
2) Training from a database with all “up-right” images and testing on randomly

rotated samples.
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Deep neural network proposal
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Scattering transform
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• A wavelet scattering network computes a translation invariant image representation
which is stable to deformations and preserves high frequency information for
classification.*

• Is an orthogonal transform based on wavelets that provides a roto-translational space.

• The angular sampling can be modified to achieve better angular sub-sampling.
* Stéphane Mallat, Joan Bruna. Invariant Scattering Convolution Networks. CoRR, 2012.

Scattering transform example wavelets
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Vectorization
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An oriented scan order was implemented:

• To achieve the invariance to the rotation the scan order of the images should have the
same angle of the feature.

• This problem was solved by re-indexing the input data on custom bilinear scanning
dense layer.

Custom scan order for angular featuresScattering transform output
(M=2, J=1, L=16)
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Oriented scan order wavelet behavior

• Letter X has two strokes separated by 112° and 68°

• The magnitude of this values is translated to linear separation between the angular
filters.

• This magnitude remains constant for each rotation.

Angles between letter X strokes
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Oriented scan order wavelet behavior

• A covariance can be observed between the angular difference int the input image
(letter X) and the translation over the channels.

• The angular information of the features in the input is preserved as the separation
between channels and remains constant over different angular inputs.

Co-variance between angular input and shift over the output vector
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Periodic padding

A cyclic convolution can be implemented with a periodic padding of the roto-translational 
space by itself and a linear 3D convolution.

This padded space contains all the possible translations of the input.
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Deep neural network proposal



Rotation-invariant CNN using Scattering Transform23-Sept-2019 17

Oriented convolutional predictor

• A series of 3D Convolution predictors allow the network to see all rotated copies of the input
pattern. This predictor reads each one of the possible orientations and generates a higher-
class probability for the translation that contains the up-right orientation.

• A shared weights Dense layer scans over the output of the convolutions and outputs a
prediction for each one of the translations in the form one out of many.

• The predictor have 7,022 trainable parameters.
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Probability matrix

0 1 2 3 4 5 6 7 8 9
0° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.00

11° 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.96 0.00
22° 0.00 0.00 0.00 1.75 0.00 0.00 0.00 0.00 0.70 0.00
33° 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 0.42 0.00
44° 0.00 0.00 0.00 2.21 0.00 0.00 0.00 0.00 0.41 0.00
55° 0.00 0.00 0.00 1.22 0.00 0.00 0.00 0.00 0.39 0.00
66° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00
77° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00
88° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

-77° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-66° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-55° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-44° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-33° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-22° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-11° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00

Angles

Classes

• All the results from the convolutional predictor are condensed in a single matrix.

• In every column we should have only a maximum (predicted class maximum).

• The expected behavior on a successful training is to have good prediction values in the
corresponding angle, upper and down rows.

Input

Output matrix
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Study cases results

The proposed architecture comparison:

Method Error rate (in %)

SVM1 10.38±0.27

Harmonic Networks2 1.69

TI-Pooling3 1.2

Rot equiv. vector field networks4 1.09

ORN5 0.76

Rotationally Invariant Conv. Mod.6 3.51

Covariant CNN (Ours) 2.69

Method Error rate (in %)

ORN-8(ORPooling)1 16.67

ORN-8(ORAlign)1 16.24

RotInv Conv. (RP_RF_1)2 19.85

RotInv Conv. (RP_RF_1_32)2 12.20

Covariant CNN (Ours) 17.21

Upright samples training Randomly rotated samples training
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Results

The output exhibits a self-organizing behavior of mapping consecutive angular values as 
consecutive rows in the table. 

This comes as a result of non-zero class probability on with maximum probability on 
and lower on the previous and next angular steps. 

When the absolute angular reference is unknown (e.g. for plankton upright position does not 
exist) the network maps one of the rotation values to one point of the linear space and then 
the consecutive angles are linearly mapped.
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Conclusions

• A rotation-invariant deep learning architecture was presented.

• This architecture uses oriented features generated by a orthogonal transform based on 
wavelets scattering transform.

• The contributions of this architecture:
1. A custom bilinear scanning dense layer by renumbering the order of the inputs to achieve 

invariance to the rotation.
2. A rotation invariant predictor that outputs class and angle without angle labeling.
3. The ability to train from up-right databases and predict over rotated samples without data 

augmentation techniques.

• Two main study cases of training on MNIST dataset as starting point were presented:
1. Random oriented data: 2.69% error rate
2. Normally up-right data: 17.21% error rate
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Future works

Trainable convolution filters

• The scattering transform has the rotation invariant capabilities but is not able to fully
describe the input, the next step is to generate a series of trainable rotation invariant
convolution predictors.

• Test in other kind of datasets like food, plankton and rotated people faces.

Replace

Input pattern Filter stage:
Scattering transform
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Thank you for your attention!

Contact:
r.rodriguez@esiee.fr
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