10 P2019

INTRODUCTION

We propose a method to automatically generate realistic training data for industrial components detection.

- Our method can generate a large scale of various synthetic images associated with the corresponding instance segmentation masks through the concept of *domain randomization* and *style transfer*.
- Our method can enhance the performance of the wrench detection task obviously, and it can be easily extended to the detection of different kinds of industrial components.
- The first work that can synthesize realistic images and the associated segmentation masks for massive amount of piled industrial components.

SYSTEM OVERVIEW

We propose a **two-step** data synthesis method to generate a large scale of realistic images of piled industrial components.

INDUSTRIAL COMPONENTS Yu-Hui Lee¹, Chu-Chun Chuang¹, Shang-Hong Lai¹, Zih-Jian Jhang²

AUTOMATIC GENERATION OF PHOTOREALISTIC TRAINING DATA FOR DETECTION OF

¹National Tsing Hua University, Taiwan, ²Industrial Technology Research Institute, Taiwan

IMAGE GENERATION

- 1. Construct a **virtual environment** according to the real scene, included a *bucket, point light, 60-80 wrench models,* and a *camera* facing the bucket.
- 2. Cast wrench models with different position and rotation randomly into the bucket every time an image is synthesized.
- 3. Randomly modify the *color* and the *metallic strength* of each wrench model in the scene.

Examples of real wrench images

INSTANCE SEGMENTATION MASK GENERATION

- For each synthetic image of wrenches, we generate the associated segmentation mask including all of the wrenches in the image.
- We also produce a **filtered mask** which preserves **only wrenches on the top layer** of each pile of wrenches.

Synthetic Images Full mask Filtered mask

• We cast a small number of *rays* from different positions of the wrench to the sky to check if the wrench is hit by other wrenches.

- PHOTOREALISM

- Applying Gaussian noise and style transfer to the synthesized images to make them more realistic.
- We adopt *Fast Photo Style[1]* for the style transfer task, and we randomly pick one real images of wrenches as the style image.

Left: before photorealism, Right: after photorealism. [1] Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, and J. Kautz, "A closed-form solution to photorealistic image stylization," arXiv:1802.06474, 2018

• We use MASK R-CNN as our wrench detector.

Qualitative results

Training Data	mask AP	bbox AP
Only R	57.1	72.0
Only S (w/o style transfer)	54.4	60.4
Only S (w/ style transfer)	59.0	64.7
R and S (w/o style transfer)	73.0	76.9
R and S (w/ style transfer)	78.2	82.0

Average Precision @0.5 IoU of using different training data for the wrench detection task. Real data(R): 392 images, Synthetic

data(S):	1,000	images.
-------	-----	-------	---------

	0	
Training Data	mask AP	bbox AP
500 Synthetic images	71.4	74.6
1,000 Synthetic images	78.2	82.0
2,000 Synthetic images	79.8	80.2
4,000 Synthetic images	82.0	82.9

Average Precision @0.5 IoU of using both 392 real images and different numbers of synthetic images to train a wrench detector.