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Motivation & Intro: A Statistical Estimation Problem
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Forward Model Inverse Problem

@ Unknown 2-D object f, and unknown non-uniform view angle
distribution p(6).

@ Observation model: y; . = Py, 4ra (f) +njx, Vi € [N], |5| < K.

e Parameters of interest: f and p(#).
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Related Works and Problems

@ Existing methods focus on estimating view angles.
o S. Basu and Y. Bresler!:

o View angle ordering via nearest neighbor;
@ Joint maximum likelihood refinement.

o A. Singer and H. Wu?:
@ Denoising (e.g., linear Wiener filtering and graph denoising);
o Diffusion maps for view angle ordering.
e Cons: Poor performance under low SNR; Computationally inefficient
with large number of projections.

1Samit Basu and Yoram Bresler, Feasibility of tomography with unknown view angles, IEEE
Transactions on Image Processing 9 (2000), no.6, 1107-1122.
2Amit Singer and H-T Wu, Two-dimensional tomography from noisy projections taken at
unknown random directions, SIAM journal on imaging sciences 6 (2013), no.1, 136=175.
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o 1-D: Multi-segment reconstruction (MSR).
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Proposed Method

e Method of Moments (MoM):

e Conjecture: first and second order moments may contain sufficient
information for the recovery.

o Difficulty: algorithm by directly inverting the first and second order
moments is unavailable with unknown non-uniform view angle
distribution p(6).

e Solution: use nonconvex optimization methods to solve constrained

weighted nonlinear least squares of first and second order moments.
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e Conjecture: first and second order moments may contain sufficient
information for the recovery.

o Difficulty: algorithm by directly inverting the first and second order
moments is unavailable with unknown non-uniform view angle
distribution p(6).

e Solution: use nonconvex optimization methods to solve constrained

weighted nonlinear least squares of first and second order moments.

@ Pros: lower computational complexity. (N : # of data)
o MoM: O(N) for moments (once) and O(1) for each iteration.

o MLE (e.g., EM): O(N) for each iteration.
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Moment Features

Fourier domain: F(f)(¢,0) ~ Z’“:ax_kmax q 19k q¢c 9¢,9).
Fourier slice theorem: y; .[¢;] = F()(§;, 0; + /ia) +n; . [&].

First order moment:
Kmax Ak nG_]-

ikl = Z Z Z kg7 (&), 61 + ka) pll]

k=—kmax g=1 1=0

=W(aog(p))linl-

Second order moment:

de mdx qkl qk2

CUl; K1, J2; H2] = Z Z Z Z Ak, q13ka,q2

ki=—Kmax ko=—kmax q1=1 g2=1

X PRI (€5 k1) PP (€, koa)Plka — ki
= (W (aa* o H(p)) W*) [j1; k1, 2; k2]
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Moment Features

@ Unbiased empirical estimators:

=|
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@ Constrained weighted nonlinear least squares:

6. 5)  rgmin F1V@o2®) Al

ap  + %[ W(aa* o H(p)) W* - C|3,

st p>0 and 1'p=1.

e Gradient based methods (e.g., gradient descent and trust region) do

not work well.
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An Alternating Direction Method of Multiplier (ADMM)
Approach

@ Reformulation and relaxation: split a into a and z, and relax the
positive constraint on p.

- W (acg(®) - Al
(a, p) =argmin ° | - _
ap  + 22[|W(aa* o H(p)) W* —C||3,,
st. p>0 and 1'p=1.
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An Alternating Direction Method of Multiplier (ADMM)
Approach

@ Reformulation and relaxation: split a into a and z, and relax the
positive constraint on p.

I 3w (acg®) - Ally + FIV (zog®)) - &l
(a, z, p) =argmin N X N,
azp + %W (az' o H(P) W — €[,
st. a=z, p=0 and 1'p=1.
@ Augmented Lagrangian:
L(a,z,p;s) = 3 |W(aog®)) - Al + 3 W (zog(P))

~ = T
—iill} + % || W (az7 e HE) W — €| +§lla—z+53.
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An ADMM Approach

o Initialization: random initialization of a(®,z(®) p(©® and s(® = 0.
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An ADMM Approach

o Initialization: random initialization of a(®,z(®) p(©® and s(® = 0.

@ lterations: alternates between the primal updates of variables a, z,
and p, and the dual update for s until convergence.

o alt*1) = argmin, L(a,z(*),p(t);s(*))
o z(t*D) = argmin, L(att)), z p(1);s(*))
° p(t+1) _ argminp ﬂ(a(t+1),z(t+1), p: s(t))
o s(t+1) — g(t) 4 a(t+1) _ (t+1)
e Output a(®), p(t).

@ Remark: each update can be realized by solving simple least squares.
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Numerical Results: Clean Case

o Parameters: N =10000, o = 1.5 deg, |k| =13, ¢ =0.3, \; =1,
A2 =0.5,and p=1.

@ Exact recovery on a projection image of 70S ribsome (up to a
rotation).

@ Perfect match of view angle distribution (up to a rotation).

(a) Original (b) Reconstructed (c)
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Numerical Results: Noisy Case

"j‘r" ':‘f"
1IN
ry = ADMM

Figure: SNR [dB] = 6.61, -0.32, -4.38, -7.25, -9.49.

@ EM algorithm for maximum marginalized log-likelihood estimation:

N
max ;InP(y,|a,p) st. p>0 and 1' p=1.
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Numerical Results: Noisy Case
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(a) Image Reconstruction (b) View Distribution

@ Parameters: N =10000, « = 3.8 deg, |k| =13, ¢ =0.3, \; =1,
)\225, and pzl.

@ Results over 20 independent experiments.

@ Performance: ADMM+EM>ADMM>EM.
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Thank you!

@ Our paper Two-dimensional Tomography from Noisy Projection Tilt
Series Taken at Unknown View Angles with Non-uniform Distribution
is available online at:
https://ieeexplore.ieee.org/document/8803755

@ Our codes are available online at:
https://github.com/LingdaWang/2D_TOMO_ICIP2019
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